0
点赞
收藏
分享

微信扫一扫

cousera 深度学习 吴恩达 第一课 第二周 学习率对优化结果的影响

墨春 2022-05-18 阅读 13

本文代码实验地址:

​​https://github.com/guojun007/logistic_regression_learning_rate​​

cousera 上的作业是 编写一个 logistic regression 分类器,为了看看学习率对优化结果的影响,我又私下做了对比实验,

2000次迭代,和30000次迭代,不同实验中分别使用学习率 0.01, 0.001, 0.0001,这个三个学习率。


2000次迭代:

cousera 深度学习 吴恩达  第一课 第二周   学习率对优化结果的影响_机器学习


30000次迭代

cousera 深度学习 吴恩达  第一课 第二周   学习率对优化结果的影响_迭代_02



在第一个图中学习率最大的0.01,优化结果先变成最坏的,然后又变成最好的,但是这可能是运行的迭代次数比较少的一个原因,如果运行迭代次数足够大的情况下学习率最小的0.0001会取得更好的优化结果,于是又将运行的迭代次数改为30000,看看能不能验证自己的想法。


在30000次的运行迭代次数中,发现还是最大的学习率0.01取得了最好的优化结果,由此可见学习率小未必能取得最好的优化结果,即使是足够长的运行迭代周期中最小的学习率0.0001也没有取得很好的优化结果。


在30000次迭代和2000次迭代中 学习率0.01  都是最好的设置。


举报

相关推荐

0 条评论