0
点赞
收藏
分享

微信扫一扫

图像分割(Segmentation)



文章目录

  • 图像分割
  • FCN
  • U-Net
  • SegNet
  • DeepLab
  • 图像分割常用数据集


图像分割

图像分割是预测图像中每一个像素所属的类别或者物体。基于深度学习的图像分割算法主要分为两类:

  1. 语义分割(Semantic Segmentation)
    为图像中的每个像素分配一个类别。
  2. 实例分割(Instance Segmentation)
    与语义分割不同,实例分割只对特定物体进行类别分配,这一点与目标检测有点相似,但目标检测输出的是边界框和类别,而实例分割输出的是掩膜和类别。

FCN


图像分割(Segmentation)_深度学习

FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题。FCN可以接受任意尺寸的输入图

像,采用反卷积层对最后一个卷积层的f eat ure map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

图像分割(Segmentation)_目标检测_02

U-Net

图像分割(Segmentation)_原力计划_03

  1. 特征提取部分:它是一个收缩网络,通过四个下采样,使图片尺寸减小,在这不断下采样的过程中,特征提取到的是浅层信息。
  2. 拼接
  3. 上采样部分,也叫扩张网络,图片尺寸变大,提取的是深层信息,使用了四个上采样,在上采样的过程中,图片的通道数是减半的,与左部分的特征提取通道数的变化相反。
  4. 图像分割(Segmentation)_原力计划_04


SegNet

图像分割(Segmentation)_目标检测_05

SegNet架构包括编码器、解码器、编码-解码结构和反卷积-上采样-下采样结构。编码器使用VGG16的前13层卷积网络,每个编码器层都对应一个解码器层。在解码器处,执行上采样和卷积。最终解码器的输出被送入softmax分类器以独立的为每个像素产生类概率。

图像分割(Segmentation)_目标检测_06

DeepLab

图像分割(Segmentation)_深度学习_07

DeepLab 是结合了深度卷积神经网络(DCNNs)和概率图模型的方法。针对信号下采样或池化降低分辨率,DeepLab 是采用的 atrous(带孔)算法扩展感受野,获取更多的上下文信息。

DeepLab 采用完全连接的条件随机场提高模型捕获细节的能力。

图像分割(Segmentation)_深度学习_08

图像分割常用数据集
  • PASCAL VOC
    VOC 数据集分为20类,包括背景为21类。
  • 图像分割(Segmentation)_深度学习_09

  • MS COCO
    MS COCO 是最大图像分割数据集,提供的类别有 80 类,有超过 33 万张图片,其中 20 万张有标注,整个数据集中个体的数目超过 150 万个。
  • 图像分割(Segmentation)_目标检测_10

  • Cityscapes
    Cit yscapes 是驾驶领域进行效果和性能测试的图像分割数据集,它包含了5000张精细标注的图像和20000张粗略标注的图像,这些图像包含50个城市的不同场景、不同背景、不同街景,以及30类涵盖地面、建筑、交通标志、自然、天空、人和车辆等的物体标注。
  • 图像分割(Segmentation)_原力计划_11




举报

相关推荐

0 条评论