0
点赞
收藏
分享

微信扫一扫

RT-Thread 4.1.0 开启 Alarm模块


前言

  • RT-Thread 的驱动框架里有RTC,Alarm组件附属与RTC,基于STM32 的BSP有现成的RTC驱动,STM32本身有ST官方的RTC HAL 支持,在STM32的BSP上开启RTC,简单配置一下即可。
  • 开启RTC后,就可以基于RTC开启闹钟Alarm功能等

开发环境

  • stm32l476-st-nucleo开发板,基于STM32L476RG
  • RT-Thread 4.1.0
  • Keil MDK5

操作步骤

  • 这里可以搭建一个 stm32l476-st-nucleo 的最小RT-Thread 系统
  • 开启Alarm组件,这里使用RT-Thread ENV 工具:​​menuconfig​

RT-Thread 4.1.0 开启 Alarm模块_RT-Thread

  • 开启RT-Thread 4.1.0 (当前最新)的Alarm组件,就一个配置项,Alarm附属于RTC,也就是Alarm工作必须开启RTC功能

调试

  • 配置使能Alarm组件,编译成功下载后,发现没有任何的效果
  • 这里需要【适配Alarm】,适配的文件位置是RTC的驱动文件:​​libraries/HAL_Drivers/drv_rtc.c​
  • 由于RTC驱动目前没有合入Alarm的驱动,所以需要添加Alarm的驱动部分,才能让Alarm组件驱动起来
  • 这里为了偷懒,直接把修改后的:​​drv_rtc.c​​​ 贴出来,可以根据:​​RT_USING_ALARM​​ 了解添加的Alarm驱动代码

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 balanceTWK first version
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
* 2021-02-05 Meco Man fix the problem of mixing local time and UTC time
* 2021-07-05 iysheng implement RTC framework V2.0
*/

#include "board.h"
#include <sys/time.h>

#ifdef BSP_USING_ONCHIP_RTC

struct rtc_device_object
{
rt_rtc_dev_t parent;
#ifdef RT_USING_ALARM
struct rt_rtc_wkalarm wkalarm;
#endif
};

static struct rtc_device_object rtc_device;

#ifdef RT_USING_ALARM
static rt_err_t rtc_alarm_time_set(struct rtc_device_object* p_dev);
static int rt_rtc_alarm_init(void);
static RTC_AlarmTypeDef salarmstructure;
#endif

#ifndef RTC_BKP_DR1
#define RTC_BKP_DR1 RT_NULL
#endif

//#define DRV_DEBUG
#define LOG_TAG "drv.rtc"
#include <drv_log.h>

#define BKUP_REG_DATA 0xA5A5

static RTC_HandleTypeDef RTC_Handler;

RT_WEAK uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister)
{
return (~BKUP_REG_DATA);
}

RT_WEAK void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data)
{
return;
}

static rt_err_t stm32_rtc_get_timeval(struct timeval *tv)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm tm_new = {0};

HAL_RTC_GetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN);

tm_new.tm_sec = RTC_TimeStruct.Seconds;
tm_new.tm_min = RTC_TimeStruct.Minutes;
tm_new.tm_hour = RTC_TimeStruct.Hours;
tm_new.tm_mday = RTC_DateStruct.Date;
tm_new.tm_mon = RTC_DateStruct.Month - 1;
tm_new.tm_year = RTC_DateStruct.Year + 100;

tv->tv_sec = timegm(&tm_new);

#if defined(SOC_SERIES_STM32H7)
tv->tv_usec = (255.0 - RTC_TimeStruct.SubSeconds * 1.0) / 256.0 * 1000.0 * 1000.0;
#endif

return RT_EOK;
}

static rt_err_t set_rtc_time_stamp(time_t time_stamp)
{
RTC_TimeTypeDef RTC_TimeStruct = {0};
RTC_DateTypeDef RTC_DateStruct = {0};
struct tm tm = {0};

gmtime_r(&time_stamp, &tm);
if (tm.tm_year < 100)
{
return -RT_ERROR;
}

RTC_TimeStruct.Seconds = tm.tm_sec ;
RTC_TimeStruct.Minutes = tm.tm_min ;
RTC_TimeStruct.Hours = tm.tm_hour;
RTC_DateStruct.Date = tm.tm_mday;
RTC_DateStruct.Month = tm.tm_mon + 1 ;
RTC_DateStruct.Year = tm.tm_year - 100;
RTC_DateStruct.WeekDay = tm.tm_wday + 1;

if (HAL_RTC_SetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}
if (HAL_RTC_SetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN) != HAL_OK)
{
return -RT_ERROR;
}

LOG_D("set rtc time.");
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR1, BKUP_REG_DATA);

#ifdef SOC_SERIES_STM32F1
/* F1 series does't save year/month/date datas. so keep those datas to bkp reg */
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR2, RTC_DateStruct.Year);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR3, RTC_DateStruct.Month);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR4, RTC_DateStruct.Date);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR5, RTC_DateStruct.WeekDay);
#endif

return RT_EOK;
}

#ifdef SOC_SERIES_STM32F1
/* update RTC_BKP_DRx*/
static void rt_rtc_f1_bkp_update(void)
{
RTC_DateTypeDef RTC_DateStruct = {0};

HAL_PWR_EnableBkUpAccess();
__HAL_RCC_BKP_CLK_ENABLE();

RTC_DateStruct.Year = HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR2);
RTC_DateStruct.Month = HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR3);
RTC_DateStruct.Date = HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR4);
RTC_DateStruct.WeekDay = HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR5);
if (HAL_RTC_SetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}

HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN);
if (HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR4) != RTC_DateStruct.Date)
{
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR1, BKUP_REG_DATA);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR2, RTC_DateStruct.Year);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR3, RTC_DateStruct.Month);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR4, RTC_DateStruct.Date);
HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR5, RTC_DateStruct.WeekDay);
}
}
#endif

static rt_err_t rt_rtc_config(void)
{
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

HAL_PWR_EnableBkUpAccess();
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
#ifdef BSP_RTC_USING_LSI
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
#else
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
#endif
HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);

#if defined(SOC_SERIES_STM32WL)
__HAL_RCC_RTCAPB_CLK_ENABLE();
#endif

/* Enable RTC Clock */
__HAL_RCC_RTC_ENABLE();

RTC_Handler.Instance = RTC;
if (HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR1) != BKUP_REG_DATA)
{
LOG_I("RTC hasn't been configured, please use <date> command to config.");

#if defined(SOC_SERIES_STM32F1)
RTC_Handler.Init.OutPut = RTC_OUTPUTSOURCE_NONE;
RTC_Handler.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
#elif defined(SOC_SERIES_STM32F0)

/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0XA0;
RTC_Handler.Init.SynchPrediv = 0xFA;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
RTC_Handler.Init.SynchPrediv = 0x0130;
#endif /* BSP_RTC_USING_LSI */

RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32H7) || defined (SOC_SERIES_STM32WB)

/* set the frequency division */
#ifdef BSP_RTC_USING_LSI
RTC_Handler.Init.AsynchPrediv = 0X7D;
#else
RTC_Handler.Init.AsynchPrediv = 0X7F;
#endif /* BSP_RTC_USING_LSI */
RTC_Handler.Init.SynchPrediv = 0XFF;

RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24;
RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE;
RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
#else
#warning "This series doesn't support yet!"
#endif

if (HAL_RTC_Init(&RTC_Handler) != HAL_OK)
{
return -RT_ERROR;
}
}
#ifdef SOC_SERIES_STM32F1
else
{
/* F1 series need update by bkp reg datas */
rt_rtc_f1_bkp_update();
}
#endif

return RT_EOK;
}

static rt_err_t stm32_rtc_init(void)
{
#if !defined(SOC_SERIES_STM32H7) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32WB)
__HAL_RCC_PWR_CLK_ENABLE();
#endif

RCC_OscInitTypeDef RCC_OscInitStruct = {0};
#ifdef BSP_RTC_USING_LSI
#ifdef SOC_SERIES_STM32WB
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI1;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
#else
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
#endif
#else
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
#endif
HAL_RCC_OscConfig(&RCC_OscInitStruct);

if (rt_rtc_config() != RT_EOK)
{
LOG_E("rtc init failed.");
return -RT_ERROR;
}

return RT_EOK;
}

static rt_err_t stm32_rtc_get_secs(time_t *sec)
{
struct timeval tv;

stm32_rtc_get_timeval(&tv);
*(time_t *) sec = tv.tv_sec;
LOG_D("RTC: get rtc_time %d", *sec);

return RT_EOK;
}

static rt_err_t stm32_rtc_set_secs(time_t *sec)
{
rt_err_t result = RT_EOK;

if (set_rtc_time_stamp(*sec))
{
result = -RT_ERROR;
}
LOG_D("RTC: set rtc_time %d", *sec);
#ifdef RT_USING_ALARM
rt_alarm_update(&rtc_device.parent.parent, 1);
#endif
return result;
}

static rt_err_t stm32_rtc_get_alarm(struct rt_rtc_wkalarm *alarm)
{
#ifdef RT_USING_ALARM
*alarm = rtc_device.wkalarm;
LOG_D("GET_ALARM %d:%d:%d",rtc_device.wkalarm.tm_hour,
rtc_device.wkalarm.tm_min,rtc_device.wkalarm.tm_sec);
return RT_EOK;
#else
return -RT_ERROR;
#endif
}

static rt_err_t stm32_rtc_set_alarm(struct rt_rtc_wkalarm *alarm)
{
#ifdef RT_USING_ALARM
LOG_D("RT_DEVICE_CTRL_RTC_SET_ALARM");
if (alarm != RT_NULL)
{
rtc_device.wkalarm.enable = alarm->enable;
rtc_device.wkalarm.tm_hour = alarm->tm_hour;
rtc_device.wkalarm.tm_min = alarm->tm_min;
rtc_device.wkalarm.tm_sec = alarm->tm_sec;
rtc_alarm_time_set(&rtc_device);
}
else
{
LOG_E("RT_DEVICE_CTRL_RTC_SET_ALARM error!!");
return -RT_ERROR;
}
LOG_D("SET_ALARM %d:%d:%d",alarm->tm_hour,
alarm->tm_min, alarm->tm_sec);
return RT_EOK;
#else
return -RT_ERROR;
#endif
}

static const struct rt_rtc_ops stm32_rtc_ops =
{
stm32_rtc_init,
stm32_rtc_get_secs,
stm32_rtc_set_secs,
stm32_rtc_get_alarm,
stm32_rtc_set_alarm,
stm32_rtc_get_timeval,
RT_NULL,
};

static rt_rtc_dev_t stm32_rtc_dev;



#ifdef RT_USING_ALARM
void rt_rtc_alarm_enable(void)
{
HAL_RTC_SetAlarm_IT(&RTC_Handler,&salarmstructure,RTC_FORMAT_BIN);
HAL_RTC_GetAlarm(&RTC_Handler,&salarmstructure,RTC_ALARM_A,RTC_FORMAT_BIN);
LOG_D("alarm read:%d:%d:%d", salarmstructure.AlarmTime.Hours,
salarmstructure.AlarmTime.Minutes,
salarmstructure.AlarmTime.Seconds);
HAL_NVIC_SetPriority(RTC_Alarm_IRQn, 0x02, 0);
HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn);
}

void rt_rtc_alarm_disable(void)
{
HAL_RTC_DeactivateAlarm(&RTC_Handler, RTC_ALARM_A);
HAL_NVIC_DisableIRQ(RTC_Alarm_IRQn);
}

static int rt_rtc_alarm_init(void)
{
return RT_EOK;
}

static rt_err_t rtc_alarm_time_set(struct rtc_device_object* p_dev)
{
if (p_dev->wkalarm.enable)
{
salarmstructure.Alarm = RTC_ALARM_A;
salarmstructure.AlarmDateWeekDay = RTC_WEEKDAY_MONDAY;
salarmstructure.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_WEEKDAY;
salarmstructure.AlarmMask = RTC_ALARMMASK_DATEWEEKDAY;
salarmstructure.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_NONE;
salarmstructure.AlarmTime.TimeFormat = RTC_HOURFORMAT12_AM;
salarmstructure.AlarmTime.Hours = p_dev->wkalarm.tm_hour;
salarmstructure.AlarmTime.Minutes = p_dev->wkalarm.tm_min;
salarmstructure.AlarmTime.Seconds = p_dev->wkalarm.tm_sec;
LOG_D("alarm set:%d:%d:%d", salarmstructure.AlarmTime.Hours,
salarmstructure.AlarmTime.Minutes,
salarmstructure.AlarmTime.Seconds);
rt_rtc_alarm_enable();
}

return RT_EOK;
}

void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
//LOG_D("rtc alarm isr.\n");
rt_alarm_update(&rtc_device.parent.parent, 1);
}

void RTC_Alarm_IRQHandler(void)
{
rt_interrupt_enter();
HAL_RTC_AlarmIRQHandler(&RTC_Handler);
rt_interrupt_leave();
}
#endif

static int rt_hw_rtc_init(void)
{
rt_err_t result;

stm32_rtc_dev.ops = &stm32_rtc_ops;
result = rt_hw_rtc_register(&stm32_rtc_dev, "rtc", RT_DEVICE_FLAG_RDWR, RT_NULL);
if (result != RT_EOK)
{
LOG_E("rtc register err code: %d", result);
return result;
}
LOG_D("rtc init success");

#ifdef RT_USING_ALARM
rt_rtc_alarm_init();
#endif

return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_rtc_init);
#endif /* BSP_USING_ONCHIP_RTC */

闹钟应用

  • 添加了基于RTC的Alarm驱动,还需要写Alarm的应用逻辑,如创建闹钟、开启闹钟、接收闹钟回调等操作,测试程序如下:

#include <rtthread.h>
#include "board.h"
#include <rtdevice.h>
#include <time.h>
#include <stdlib.h>

#ifdef RT_USING_ALARM

#define RTC_DEBUG

#define DBG_ENABLE
#define DBG_SECTION_NAME "rtc.test"
#define DBG_LEVEL DBG_LOG
#include <rtdbg.h>

#ifdef RTC_DEBUG

static struct rt_alarm * p_alarm_sec = RT_NULL;
static struct rt_alarm * p_alarm_min = RT_NULL;
static struct rt_alarm * p_alarm_hour = RT_NULL;
static struct rt_alarm * p_alarm_time = RT_NULL;

static time_t rtc_gettime(void)
{
static time_t now;
static struct tm tm;

now = time(NULL);
gmtime_r(&now, &tm);

LOG_D("BJ time:%04d-%02d-%02d %02d:%02d:%02d.%03d\n",
tm.tm_year + 1900, tm.tm_mon + 1,
tm.tm_mday, tm.tm_hour + 8, tm.tm_min,
tm.tm_sec, rt_tick_get() % 1000);

return now;
}

static void alarm_time_cb(rt_alarm_t alarm, time_t timestamp)
{
LOG_D("alarm_time_cb ok!\n");
}

static void alarm_hour_cb(rt_alarm_t alarm, time_t timestamp)
{
LOG_D("alarm_hour_cb ok!\n");
}

static void alarm_minute_cb(rt_alarm_t alarm, time_t timestamp)
{
LOG_D("alarm_minute_cb ok!\n");
}

static void alarm_second_cb(rt_alarm_t alarm, time_t timestamp)
{
LOG_D("alarm_second_cb ok!\n");
}

static struct rt_alarm * rtc_alarm_test_create(rt_alarm_callback_t callback, rt_uint32_t flag, struct tm *p_tm)
{
struct rt_alarm_setup alarm_setup_test;

alarm_setup_test.flag = flag;
alarm_setup_test.wktime.tm_year = p_tm->tm_year;
alarm_setup_test.wktime.tm_mon = p_tm->tm_mon;
alarm_setup_test.wktime.tm_mday = p_tm->tm_mday;
alarm_setup_test.wktime.tm_wday = p_tm->tm_wday;
alarm_setup_test.wktime.tm_hour = p_tm->tm_hour;
alarm_setup_test.wktime.tm_min = p_tm->tm_min;
alarm_setup_test.wktime.tm_sec = p_tm->tm_sec;

return rt_alarm_create(callback, &alarm_setup_test);
}

static void rtc_alarm_time_create(void)
{
static time_t now;
static struct tm tm;

if (p_alarm_time != RT_NULL)
return;

now = time(NULL) + 65;
gmtime_r(&now, &tm);

p_alarm_time = rtc_alarm_test_create(alarm_time_cb, RT_ALARM_DAILY, &tm);
}

static void rtc_alarm_time_start(void)
{
if (p_alarm_time != RT_NULL)
rt_alarm_start(p_alarm_time);
}

static void rtc_alarm_time_stop(void)
{
if (p_alarm_time != RT_NULL)
rt_alarm_stop(p_alarm_time);
}

static void rtc_alarm_time_delete(void)
{
if (p_alarm_time != RT_NULL)
{
if (rt_alarm_delete(p_alarm_time) == RT_EOK)
p_alarm_time = RT_NULL;
}
}

static void rtc_alarm_second_create(void)
{
static time_t now;
static struct tm tm;

if (p_alarm_sec != RT_NULL)
return;

now = time(NULL) + 1;
gmtime_r(&now, &tm);

p_alarm_sec = rtc_alarm_test_create(alarm_second_cb, RT_ALARM_SECOND, &tm);
}

static void rtc_alarm_second_start(void)
{
if (p_alarm_sec != RT_NULL)
rt_alarm_start(p_alarm_sec);
}

static void rtc_alarm_second_stop(void)
{
if (p_alarm_sec != RT_NULL)
rt_alarm_stop(p_alarm_sec);
}

static void rtc_alarm_second_delete(void)
{
if (p_alarm_sec != RT_NULL)
{
if (rt_alarm_delete(p_alarm_sec) == RT_EOK)
p_alarm_sec = RT_NULL;
}
}

static void rtc_alarm_minute_create(void)
{
static time_t now;
static struct tm tm;

if (p_alarm_min != RT_NULL)
return;

now = time(NULL) + 60;
gmtime_r(&now, &tm);

p_alarm_min = rtc_alarm_test_create(alarm_minute_cb, RT_ALARM_MINUTE, &tm);
}

static void rtc_alarm_minute_start(void)
{
if (p_alarm_min != RT_NULL)
rt_alarm_start(p_alarm_min);
}

static void rtc_alarm_minute_stop(void)
{
if (p_alarm_min != RT_NULL)
rt_alarm_stop(p_alarm_min);
}

static void rtc_alarm_minute_delete(void)
{
if (p_alarm_min != RT_NULL)
{
if (rt_alarm_delete(p_alarm_min) == RT_EOK)
p_alarm_min = RT_NULL;
}
}

static void rtc_alarm_hour_create(void)
{
static time_t now;
static struct tm tm;

if (p_alarm_hour != RT_NULL)
return;

now = time(NULL) + 3600;
gmtime_r(&now, &tm);

p_alarm_hour = rtc_alarm_test_create(alarm_hour_cb, RT_ALARM_HOUR, &tm);
}

static void rtc_alarm_hour_start(void)
{
if (p_alarm_hour != RT_NULL)
rt_alarm_start(p_alarm_hour);
}

static void rtc_alarm_hour_stop(void)
{
if (p_alarm_hour != RT_NULL)
rt_alarm_stop(p_alarm_hour);
}

static void rtc_alarm_hour_delete(void)
{
if (p_alarm_hour != RT_NULL)
{
if (rt_alarm_delete(p_alarm_hour) == RT_EOK)
p_alarm_hour = RT_NULL;
}
}

void rtc_alarm_start(int argc, char **argv)
{
int index = 0;

if (argc >= 2)
{
index = atoi(argv[1]);
}

switch(index)
{
case 0:
rtc_alarm_hour_start();
break;
case 1:
rtc_alarm_minute_start();
break;
case 2:
rtc_alarm_second_start();
break;
case 3:
rtc_alarm_time_start();
break;
default:
break;
}
}

void rtc_alarm_stop(int argc, char **argv)
{
int index = 0;

if (argc >= 2)
{
index = atoi(argv[1]);
}

switch(index)
{
case 0:
rtc_alarm_hour_stop();
break;
case 1:
rtc_alarm_minute_stop();
break;
case 2:
rtc_alarm_second_stop();
break;
case 3:
rtc_alarm_time_stop();
break;
default:
break;
}
}

void rtc_alarm_create(int argc, char **argv)
{
int index = 0;

if (argc >= 2)
{
index = atoi(argv[1]);
}

switch(index)
{
case 0:
rtc_alarm_hour_create();
break;
case 1:
rtc_alarm_minute_create();
break;
case 2:
rtc_alarm_second_create();
break;
case 3:
rtc_alarm_time_create();
break;
default:
break;
}
}

void rtc_alarm_delete(int argc, char **argv)
{
int index = 0;

if (argc >= 2)
{
index = atoi(argv[1]);
}

switch(index)
{
case 0:
rtc_alarm_hour_delete();
break;
case 1:
rtc_alarm_minute_delete();
break;
case 2:
rtc_alarm_second_delete();
break;
case 3:
rtc_alarm_time_delete();
break;
default:
break;
}
}

MSH_CMD_EXPORT(rtc_gettime, rtc get time);
MSH_CMD_EXPORT(rtc_alarm_create, rtc alarm_create);
MSH_CMD_EXPORT(rtc_alarm_delete, rtc alarm_delete);
MSH_CMD_EXPORT(rtc_alarm_start, rtc alarm_start);
MSH_CMD_EXPORT(rtc_alarm_stop, rtc alarm_stop);

#endif

#endif //RT_USING_ALARM

Alarm 调试

  • Alarm 有好几个类型:单次、周期性的,周期的又分为:周、天、时、分、秒等,这个介绍在前面的文章提过,如果需要可以查看前面的介绍

msh >rtc_alarm_create 1       /* 创建闹钟:分钟为周期,也就是每分钟触发一次回调 */
msh >rtc_alarm_start 1 /* 使能闹钟:使能后闹钟才会触发 */
msh >list_alarm /* 查看闹钟列表,注意 M 代表类型【分钟】, en:1 代表使能 */
| hh:mm:ss | week | flag | en |
+----------+------+------+----+
| 13:17:05 | 2 | M | 1 |
+----------+------+------+----+

RT-Thread 4.1.0 开启 Alarm模块_闹钟_02

  • 停止闹钟:周期性的闹钟,如果不需要时需要手动停止

RT-Thread 4.1.0 开启 Alarm模块_RT-Thread_03

  • 删除闹钟:闹钟创建后,不会自动删除,可以删除节省【内存RAM】,删除闹钟指令:​​msh >rtc_alarm_delete 1​

小结

  • 本篇基于STM32L4 系列、STM32H5系列测试通过,但不代表其他的平台会直接能测试
  • alarm 与RTC的时间:均为UTC 时间,也就是没有【时区】的,这个一定要注意


举报

相关推荐

0 条评论