有了之前的准备工作,就可以进行接下来的BA无标度网络的生成了:
function Ans = BA(m0,M0,t,m)
%BA(m0,M0,t,m)
%先生成一个m0个节点、共M0条连边的网络,保证每个点都有至少一条连边
%随后生长t个节点,每个节点需要m条连边
%m<m0; 定义m0为偶数
% M0<=1/2*m0*(m0-1)
%----------------生成一个初始网络----------------------
A = regular(m0,M0,t);%规则网络
%--------------开始生长t个节点,每个节点向网络连接m条边------
for i = m0+1:m0+t
x = i;
B = P_degree(A,i-1);
for j = 1:m
p = rand();
y = Choosevertex(p,B);
while A(x,y) == 1 || x-y == 0
p = rand();
y = Choosevertex(p,B);
end
A(x,y) = 1;
A(y,x) = 1;
end
end
Ans = A;
%----------------画出图像------------------------
% figure
% AA = A(1:m0+t-1,1:m0+t-1);
% C = graph(A,'upper');
% CC = graph(AA,'upper');
% D = degree(CC);
% e = max(D);
% f = find(D>=(e-1))';
% F = find(D==e)';
% g = m0+t;
% plot(C);
% h = plot(C,'Layout','force');
% highlight(h,f)
% highlight(h,f,'NodeColor','g')
% highlight(h,F)
% highlight(h,F,'NodeColor','r')
% highlight(h,g,'Marker','s','MarkerSize',15,'NodeColor','magenta')
end
在代码后半部分的画图代码可以选择性使用。
同时,对于BA无标度网络我们可以得到一些相关特性的图像,这里提供一种:
clear
A = BA(4,6,1000,4);
[a,b] = P_k(A);
loglog(a,b,'s');
hold on
A = BA(6,8,1000,6);
[a,b] = P_k(A);
loglog(a,b,'>');
hold on
A = BA(8,10,1000,8);
[a,b] = P_k(A);
loglog(a,b,'o');
hold on
c = 5:0.01:50;
d = 70.*c.^-2.9;
loglog(c,d,'--');
xlabel('k')
ylabel('P(k)')
这段代码中涉及到一个自定义函数,代码如下:
function [a,b] = P_k(a)
N = size(a,2);
A = graph(a,'upper');
B = degree(A);
C = max(B);
K = 1:C;
for i = 1:C
n(i) = size(find(B==i),1);
end
n = n./N;
a = K;
b = n;
end