0
点赞
收藏
分享

微信扫一扫

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds


Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds

​​https://arxiv.org/abs/1905.03691​​

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_算法

Sampling layer

在G-PCC中,基于八叉树的几何编码根据量化尺度来控制有损几何压缩,设输入点云为:

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_编码器_02


G-PCC编码器的量化计算如下:

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_点云_03

其中是用户人工定义的参数。

量化后,将有许多重复点共享相同的量化位置。一种常见的方法是合并这些重复的点,这样可以减少输入点云中的点数。

受G-PCC的启发,这篇文章将点云进行下采样后输再输入编码器。输入点,被最远点采样(FPS)得到子集,其中是距离已采样点集最远的点。与随机采样相比,FPS采样得到的点集的密度更均匀,更能保持原始对象的形状特征。

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_编码器_10

Encoder and Decoder

编码器使用PointNet:

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_点云_11

解码器使用全连接网络:

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_点云_12

Quantization

用加性均匀噪声代替量化:

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_人工智能_13

Rate-distortion Loss

率: Factorized Entropy Model

失真:Chamfer distance

结果

数据集:ShapeNet

Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_人工智能_14


Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_算法_15


Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds_编码器_16


举报

相关推荐

0 条评论