0
点赞
收藏
分享

微信扫一扫

不改一行代码定位线上性能问题

不改一行代码定位线上性能问题_java

背景

最近时运不佳,几乎天天被线上问题骚扰。前几天刚解决了一个 ​​HashSet 的并发问题​​,周六又来了一个性能问题。

大致的现象是:

我们提供出去的一个 OpenAPI 反应时快时慢,快的时候几十毫秒,慢的时候几秒钟才响应。

尝试解决

由于这种也不是业务问题,不能直接定位。所以尝试在测试环境复现,但遗憾的测试环境贼快。

没办法只能硬着头皮上了。

中途有抱着侥幸心里让运维查看了 ​Nginx​​ 里 ​OpenAPI​​ 的响应时间,想把锅扔给网络。结果果然打脸了; ​Nginx​ 里的日志也表明确实响应时间确实有问题。

为了清晰的了解这个问题,我简单梳理了这个调用过程。

不改一行代码定位线上性能问题_jar_02

整个的流程算是比较常见的分层架构:

  • 客户端请求到 ​Nginx​。
  • Nginx​​ 负载了后端的 ​​web​​ 服务。
  • web​​ 服务通过 ​​RPC​​ 调用后端的 ​​Service​​ 服务。

日志大法

我们首先想到的是打日志,在可能会慢的方法或接口处记录处理时间来判断哪里有问题。

但通过刚才的调用链来说,这个请求流程不短。加日志涉及的改动较多而且万一加漏了还有可能定位不到问题。

再一个是改动代码之后还会涉及到发版上线。

工具分析

所以最好的方式就是不改动一行代码把这个问题分析出来。

这时就需要一个 ​agent​ 工具了。我们选用了阿里以前开源的 Tprofile 来使用。

只需要在启动参数中加入 ​-javaagent:/xx/tprofiler.jar​ 即可监控你想要监控的方法耗时,并且可以给你输出报告,非常方便。对代码没有任何侵入性同时性能影响也较小。

工具使用

下面来简单展示下如何使用这个工具。

首先第一步自然是 ​clone​ 源码然后打包,可以克隆我修改过的源码。

因为这个项目阿里多年没有维护了,还残留一些 ​bug​​,我在它原有的基础上修复了个影响使用的 ​bug​,同时做了一些优化。

执行以下脚本即可。

  1. git clone https://github.com/crossoverJie/TProfiler

  2. mvn assembly:assembly

到这里之后会在项目的 ​TProfiler/pkg/TProfiler/lib/tprofiler-1.0.1.jar​ 中生成好我们要使用的 jar 包。

接下来只需要将这个 jar 包配置到启动参数中,同时再配置一个配置文件路径即可。

这个配置文件我 copy 官方的解释。

  1. #log file name
  2. logFileName = tprofiler.log
  3. methodFileName = tmethod.log
  4. samplerFileName = tsampler.log

  5. #basic configuration items
  6. # 开始取样时间
  7. startProfTime = 1:00:00

  8. # 结束取样时间
  9. endProfTime = 23:00:00

  10. # 取样的时间长度
  11. eachProfUseTime = 10

  12. # 每次取样的时间间隔
  13. eachProfIntervalTime = 1

  14. samplerIntervalTime = 20

  15. # 端口,主要不要冲突了
  16. port = 50000
  17. debugMode = false
  18. needNanoTime = false

  19. # 是否忽略 get set 方法
  20. ignoreGetSetMethod = true

  21. #file paths 日志路径
  22. logFilePath = /data/work/logs/tprofile/${logFileName}
  23. methodFilePath =/data/work/logs/tprofile/${methodFileName}
  24. samplerFilePath =/data/work/logs/tprofile/${samplerFileName}

  25. #include & excludes items
  26. excludeClassLoader = org.eclipse.osgi.internal.baseadaptor.DefaultClassLoader

  27. # 需要监控的包
  28. includePackageStartsWith = top.crossoverjie.cicada.example.action

  29. # 不需要监控的包
  30. excludePackageStartsWith = com.taobao.sketch;org.apache.velocity;com.alibaba;com.taobao.forest.domain.dataobject

最终的启动参数如下:

  1. -javaagent:/TProfiler/lib/tprofiler-1.0.1.jar
  2. -Dprofile.properties=/TProfiler/profile.properties

为了模拟排查接口响应慢的问题,我用 cicada 实现了一个 ​HTTP​ 接口。其中调用了两个耗时方法:

不改一行代码定位线上性能问题_java_03

这样当我启动应用时, ​Tprofile​ 就会在我配置的目录记录它所收集的方法信息。

我访问接口 ​http://127.0.0.1:5688/cicada-example/demoAction?name=test&id=10​​ 几次后它就会把每个方法的明细响应写入 ​tprofile.log​。

不改一行代码定位线上性能问题_nginx_04

由左到右每列分别代表为:

线程ID、方法栈深度、方法编号、耗时(毫秒)。

但 ​tmethod.log​ 还是空的;

这时我们只需要执行这个命令即可把最新的方法采样信息刷到 ​tmethod.log​ 文件中。

  1. java -cp /TProfiler/tprofiler.jar com.taobao.profile.client.TProfilerClient 127.0.0.1 50000 flushmethod

  2. flushmethod success

其实就是访问了 ​Tprofile​​ 暴露出的一个服务,他会读取、解析 ​tprofile.log​​ 同时写入 ​tmethod.log​.

其中的端口就是配置文件中的 port。

再打开 ​tmethod.log​ :

不改一行代码定位线上性能问题_java_05

其中会记录方法的信息。

  • 第一行数字为方法的编号。可以通过这个编号去 ​tprofile.log​(明细)中查询每次的耗时情况。
  • 行末的数字则是这个方法在源码中最后一行的行号。

其实大部分的性能分析都是统计某个方法的平均耗时。

所以还需要执行下面的命令,通过 ​tmethod.log tprofile.log​来生成每个方法的平均耗时。

  1. java -cp /TProfiler/tprofiler.jar com.taobao.profile.analysis.ProfilerLogAnalysis tprofiler.log tmethod.log topmethod.log topobject.log
  2. print result success

打开 ​topmethod.log​ 就是所有方法的平均耗时。

不改一行代码定位线上性能问题_nginx_06

  • 4 为请求次数。
  • 205 为平均耗时。
  • 818 则为总耗时。

和实际情况是相符的。

方法的明细耗时

这是可能还会有其他需求;比如说我想查询某个方法所有的明细耗时怎么办呢?

官方没有提供,但也是可以的,只是要麻烦一点。

比如我想查看 ​selectDB()​ 的耗时明细:

首先得知道这个方法的编号,在 ​tmethod.log​ 中可以看查到。

  1. 2 top/crossoverjie/cicada/example/action/DemoAction:selectDB:84

编号为 2.

之前我们就知道 ​tprofile.log​ 记录的是明细,所以通过下面的命令即可查看。

  1. grep 2 tprofiler.log

不改一行代码定位线上性能问题_jar_07

通过第三列方法编号为 2 的来查看每次执行的明细。

但这样的方式显然不够友好,需要人为来过滤干扰,步骤也多;所以我也准备加上这样一个功能。

只需要传入一个方法名称即可查询采集到的所有方法耗时明细。

总结

回到之前的问题;线上通过这个工具分析我们得到了如下结果。

  • 有些方法确实执行时快时慢,但都是和数据库相关的。由于目前数据库压力较大,准备在接下来进行冷热数据分离,以及分库分表。
  • 在第一步操作还没实施之前将部分写数据库的操作改为异步,减小响应时间。
  • 考虑接入 ​pinpoint​​ 这样的 ​​APM工具​​。

类似于 Tprofile 的工具确实挺多的,找到适合自己的就好。

在还没有使用类似于 ​pinpoint​ 这样的分布式跟踪工具之前应该会大量依赖于这个工具,所以后续说不定也会做一些定制,比如增加一些可视化界面等,可以提高排查效率。

你的点赞与分享是对我最大的支持

不改一行代码定位线上性能问题_nginx_08

不改一行代码定位线上性能问题_jar_09




举报

相关推荐

0 条评论