0
点赞
收藏
分享

微信扫一扫

基于Skywalking开发分布式监控(二)

目录

HightLight

使用PostgreSQL来存储和检索vector,在数据规模非庞大的情况下,简单高效。

可以和在线业务共用一套DB,减少其他组件的引入,降低复杂度,在业务初期可以极大的提升效率。

Mac上安装PostgreSQL

下载最新版(我下载的是16,已包含pgvector插件)
https://postgresapp.com/downloads.html

在这里插入图片描述

图形界面安装,很简单

Installing Postgres.app
Download   ➜   Move to Applications folder   ➜   Double Click

If you don't move Postgres.app to the Applications folder, some features may not work (more info)

Click "Initialize" to create a new server

Configure your $PATH to use the included command line tools (optional):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin | sudo tee /etc/paths.d/postgresapp

DBever图形界面管理端

创建DB

创建mydb
在这里插入图片描述

使用向量检索

# 在mydb里启用pgvector插件
CREATE EXTENSION vector;

# 创建一张表items,其中的embedding字段是vector类型
CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

# 添加数据
INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

# 相似性检索
SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

vector相似度计算

符号相似度计算
<->L2距离
<=>cosine距离
<#>inner product点积距离

近似近邻索引

默认情况下pgvector提供的是精确近邻检索,也即全量计算找近邻,召回精准,但计算性能差。

pgvector还提供了两种近似近邻索引:

  1. HNSW - added in 0.5.0
  2. IVFFlat

HNSW近似近邻索引示例

# Add an index for each distance function you want to use.

# 创建L2 distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_l2_ops);

# 创建Inner product distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_ip_ops);

# 创建Cosine distance的hnsw近似近邻索引

CREATE INDEX ON items USING hnsw (embedding vector_cosine_ops);

2000维以内都可以索引。
Vectors with up to 2,000 dimensions can be indexed.

举报

相关推荐

0 条评论