0
点赞
收藏
分享

微信扫一扫

自动化机器学习:方法,系统和挑战


自动化机器学习:方法,系统和挑战_语言模型

前沿

    在过去十年中,机器学习研究和应用激增;特别是深度学习方法已经在许多应用领域取得了重要进展,例如计算机视觉、语音处理和游戏。然而,许多机器学习方法的性能对需要过多的设计的决策场景非常敏感,这对新用户构成了相当大的障碍。在蓬勃发展的深度学习领域尤其如此,人类工程师需要选择正确的神经网络、训练过程、正则化方法和所有这些组件的超参数,以使他们的网络以足够的性能完成他们应该做的事情。每个应用程序都必须重复这个过程。即使是专家也经常会遇到繁琐的反复试验,直到他们为特定的数据集找到一套好的选择。

    自动机器学习领域旨在以数据驱动、客观和自动的方式做出这些决定:用户只需提供数据,自动机器学习系统自动确定最适合这一特定应用的方法。因此,AutoML使那些对应用机器学习感兴趣但没有资源来详细了解机器学习背后技术的领域科学家可以使用最先进的机器学习方法。这可以被看作是机器学习的民主化:有了AutoML,定制的最先进的机器学习触手可及。

    正如我们在这本书里所展示的,自动学习方法已经足够成熟,可以与人类机器学习专家匹敌,有时甚至超越他们。简而言之,AutoML可以提高性能,同时节省大量的时间和金钱,因为机器学习专家既难找又昂贵。因此,近年来,人们对AutoML的商业兴趣急剧增长,一些主要的科技公司正在开发他们自己的AutoML系统。然而,我们注意到,开源自动学习系统比专有付费黑匣子服务更有利于机器学习民用化的目的。


内容简介

    这本书概述了AutoML领域的快速发展。由于社区当前对深度学习的关注,一些研究者现在错误地将自动学习等同于神经架构搜索的主题;但是当然,如果你正在读这本书,你会知道—虽然网络连接存储是自动存储的一个很好的例子—但是自动存储比网络连接存储有更多的优点。这本书旨在为有兴趣开发他们自己的自动化方法的研究人员提供一些背景和出发点,为那些想把自动化应用到他们的问题上的从业者强调可用的系统,并为已经在自动化领域工作的研究人员提供一个最新的视角。这本书分为三个部分,分别论述了AutoML的这些不同方面。

本书目录

自动化机器学习:方法,系统和挑战_生成对抗网络_02

自动化机器学习:方法,系统和挑战_生成对抗网络_03


举报

相关推荐

0 条评论