0
点赞
收藏
分享

微信扫一扫

MapReduce切片机制


MapReduce切片机制

为什么需要切片

  MapReduce是一个分布式计算框架,处理的是海量数据的计算。那么并行运算必不可免,但是到底并行多少个Map任务来计算呢?每个Map任务计算哪些数据呢?这些我们数据我们不能够凭空估计,只能根据实际数据的存储情况来动态分配,而我们要介绍的切片就是要解决这个问题,

MapReduce切片机制_hadoop

切片机制原理

  切片的规则我们需要通过阅读源代码来了解。首先我们来看下hadoop中默认的两个参数配置

1.默认参数

官网地址:​​http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml​​

mapreduce.job.split.metainfo.maxsize  10000000
mapreduce.input.fileinputformat.split.minsize 0

MapReduce切片机制_mapreduce_02


MapReduce切片机制_数据_03

2. 源码查看

MapReduce切片机制_数据_04

MapReduce切片机制_切片机制_05

MapReduce切片机制_MapReduce_06

MapReduce切片机制_mapreduce_07

MapReduce切片机制_hadoop_08

注意:SPLIT_SLOP = 1.1,即当划分后剩余文件大小除splitSize大于1.1时,循环继续,小于1.1时退出循环,将剩下的文件大小归到一个切片上去。

// 128MB
long blockSize = file.getBlockSize();
// 128MB
long splitSize = computeSplitSize(blockSize, minSize, maxSize);
// 文件的大小 260MB
long bytesRemaining = length;
// 第一次 260/128=2.x > 1.1
// 第二次 132/128=1.03 <1.1 不执行循环
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
// 获取块的索引
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
// 将块的信息保存到splits集合中
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
// 260-128=132MB
bytesRemaining -= splitSize;
}
// 将剩余的132MB添加到splits集合中
if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
}

3.切片总结

FileInputFormat中默认的切片机制

  1. 简单地按照文件的内容长度进行切片
  2. 切片大小,默认等于block大小,可以通过调整参数修改,注意1.1的问题
  3. 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
  4. 一个切片(split)对应一个MapTask事例
  5. 一个job的map阶段并行度由客户端在提交job时决定

比如待处理数据有两个文件:
file1.txt 260M
file2.txt 10M
经过FileInputFormat的切片机制运算后,形成的切片信息如下
file1.txt.split1-- 0~128
file1.txt.split2-- 128~260
file2.txt.split1-- 0~10M。


举报

相关推荐

0 条评论