0
点赞
收藏
分享

微信扫一扫

【优化算法】自适应对抗粘菌优化算法 (AOSMA)【含Matlab源码 1425期】


一、获取代码方式

获取代码方式1:

通过订阅紫极神光博客​付费专栏​,凭支付凭证,​私信博主​,可获得此代码。

获取代码方式2:

完整代码已上传我的资源:​​【优化算法】自适应对抗粘菌优化算法 (AOSMA)【含Matlab源码 1425期】​​

备注:

订阅紫极神光博客​付费专栏​,可免费获得​1​份代码(​有效期​为订阅日起,三天内有效);

二、部分源代码

%% The Adative Opposition Slime Mould Algorithm (AOSMA) function
function [Destination_fitness,bestPositions,Convergence_curve]=AOSMA(N,Max_iter,lb,ub,dim,fobj)

bestPositions=zeros(1,dim);
Destination_fitness=inf;%change this to -inf for maximization problems
AllFitness = inf*ones(N,1);%record the fitness of all slime mold
weight = ones(N,dim);%fitness weight of each slime mold
%Initialize the set of random solutions

X=initialization(N,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);

it=1; %Number of iterations
lb=ones(1,dim).*lb; % lower boundary
ub=ones(1,dim).*ub; % upper boundary
del=0.03; % parameter

for i=1:N
% Check if solutions go outside the search space and bring them back
Flag4ub=X(i,:)>ub;
Flag4lb=X(i,:)<lb;
X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
AllFitness(i) = fobj(X(i,:));

end
% Main loop
while it <= Max_iter
oldfitness=AllFitness;
[SmellOrder,SmellIndex] = sort(oldfitness); %Eq.(7)
worstFitness = SmellOrder(N);
bestFitness = SmellOrder(1);

S=bestFitness-worstFitness+eps; % plus eps to avoid denominator zero

%calculate the fitness weight of each slime mold
for i=1:N
for j=1:dim
if i<=(N/2) %Eq.(6)
weight(SmellIndex(i),j) = 1+rand()*log10((bestFitness-SmellOrder(i))/(S)+1);
else
weight(SmellIndex(i),j) = 1-rand()*log10((bestFitness-SmellOrder(i))/(S)+1);
end
end
end

%update the best fitness value and best position
if bestFitness < Destination_fitness
bestPositions=X(SmellIndex(1),:);
Destination_fitness = bestFitness;
end
a = atanh(-(it/Max_iter)+1); %Eq.(11)
b = 1-it/Max_iter; %Eq.(12)
% Update the Position of search agents
for i=1:N %Eq.(13)
if rand<del
X(i,:) = (ub-lb)*rand+lb; %Eq.(13c)
else
p =tanh(abs(oldfitness(i)-Destination_fitness)); %Eq.(4)
vb = unifrnd(-a,a,1,dim);
vc = unifrnd(-b,b,1,dim);
A = randi([1,N]); % one positions randomly selected from population
r2 = rand();
for j=1:dim
if r2<p %Eq.(13a)
X(i,j) = bestPositions(j)+ vb(j)*(weight(i,j)*bestPositions(j)-X(A,j));
else %Eq.(13b)
X(i,j) = vc(j)*X(i,j);
end
end
end
end
for i=1:N
% Check if solutions go outside the search space and bring them back
Flag4ub=X(i,:)>ub;
Flag4lb=X(i,:)<lb;
X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
AllFitness(i) = fobj(X(i,:));
end
for i=1:N
if AllFitness(i)>oldfitness(i) %Eq.(16)
D(i,:)=min(X(i,:))+max(X(i,:))-X(i,:); %Eq.(14)
Flag4ub=D(i,:)>ub;
Flag4lb=D(i,:)<lb;
D(i,:)=(D(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
if fobj(D(i,:))<AllFitness(i) %Eq.(15)
X(i,:)=D(i,:);
end
end
end
Convergence_curve(it)=Destination_fitness;
it=it+1;
end
end

三、运行结果

【优化算法】自适应对抗粘菌优化算法 (AOSMA)【含Matlab源码 1425期】_matlab

四、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.

[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.



举报

相关推荐

0 条评论