0
点赞
收藏
分享

微信扫一扫

【Pandas学习笔记02】- 数据处理高阶用法

外贸达人小峻先森 2022-03-18 阅读 28

​​​​


作者:幻好​



Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法。在本文将主要介绍 Pandas 的实用数据处理操作。​


概述

Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它用于数据挖掘和数据分析,同时也提供数据清洗功能。

在本文中,主要介绍Pandas在数据处理中的​高阶用法​,包括:数据的合并、分组和拆分等用法。如果学过数据库的SQL语法,本文理解起来会非常快。

数据合并

数据准备

首先定义一个 ​​DataFrame​​ 数据集:

import pandas as pd

df_a = pd.DataFrame(columns=['name', 'rank'], data=[['C', 1], ['java', 2], ['python', 3], ['golang', 4]])
df_b = pd.DataFrame(columns=['name', 'year'], data=[['java', 2020], ['python', 2021], ['golang', 2022]])

通过 ​​merge()​​ 方法能对DataFrame数据集进行合并,通过内连接、外连接、左连接、右连接等方式,如下实例:

merge方法默认是内连接取交集,通过 ​​how​​​ 指定连接类型,​​on​​ 指定连接字段

# 通过指定 columns 中的 name 内连接
df_tmp = pd.merge(df_a, df_b, on='name', how='outer')
print(df_tmp)

# ========打印========
name rank year
0 java 2 2020
1 python 3 2021
2 golang 4 2022
# 通过指定 columns 中的 name 左连接
df_tmp = pd.merge(df_a, df_b, on='name', how='left')
print(df_tmp)

# ========打印========
name rank year
0 C 1 NaN
1 java 2 2020.0
2 python 3 2021.0
3 golang 4 2022.0
# 通过指定 columns 中的 name 右连接
df_tmp = pd.merge(df_a, df_b, on='name', how='right')
print(df_tmp)

# ========打印========
name rank year
0 java 2 2020
1 python 3 2021
2 golang 4 2022
# 如果合并两个 DataFrame 不含公共的 columns ,可以直接指定匹配的字段
df_c = pd.DataFrame(columns=['name1', 'year'], data=[['java', 2020], ['python1', 2021], ['golang1', 2022]])
df_tmp = pd.merge(df_a, df_c, left_on='name', right_on='name1')
print(df_tmp)

# ========打印========
name rank name1 year
0 java 2 java 2020

数据分组

数据准备

首先定义一个 ​​DataFrame​​ 数据集:

import pandas as pd

df_a = pd.DataFrame(columns=['name', 'nums'], data=[['python', 1], ['java', 2], ['python', 3], ['java', 4]])

通过 ​​group()​​ 方法能对DataFrame数据集进行分组操作,分组后还能进行求和、取平均值等操作,如下实例:

# 获取分组后的数据集中每个数据的数量
df_tmp = df_a.groupby('name').size()
print(df_tmp)

# ========打印========
name
java 2
python 2
dtype: int64
# 将分组后的数据集,根据 nums 字段进行求和
df_tmp = df_a.groupby('name')['nums'].sum()
print(df_tmp)

# ========打印========
name
java 6
python 4
Name: nums, dtype: int64
# 获取分组后的数据集的大小
df_tmp = df_a.groupby('name').size()
print(df_tmp)

# ========打印========
name
java 3
python 2
Name: nums, dtype: int64

数据拆分

数据准备

首先定义一个 ​​DataFrame​​ 数据集:

import pandas as pd

df_a = pd.DataFrame(columns=['name', 'rank'], data=[['C_no1', 1], ['java_no2', 2], ['python_no3', 3], ['golang', 4]])

通过 ​​split()​​ 方法能对DataFrame数据集中某列数据进行拆分操作,如下实例:

# 数据拆分,对 columns 中的某列的数据某个符号匹配拆分,expand:为True可以直接将分列后的结果转换成DataFrame
df_tmp = df_a['name'].str.split('_', 1, expand=True)
print(df_tmp)

# ========打印========
0 1
0 C no1
1 java no2
2 python no3
3 golang None
# 数据拆分,对拆分后的数据再次与原数据合并
df_tmp = pd.merge(df_a, df_a['name'].str.split('_', 1, expand=True), how='left', left_index=True, right_index=True)
print(df_tmp)

# ========打印========
name rank 0 1
0 C_no1 1 C no1
1 java_no2 2 java no2
2 python_no3 3 python no3
3 golang 4 golang None

数据可视化

在使用 Pandas 处理数据的过程中,为了更直观的展示数据的线性关系,我们可以引入 ​​matplotlib​​ 库将我们的数据变成相关图形

# plot() 方法生成相应的线性图形
df_a = pd.DataFrame(columns=['name', 'rank'], data=[['C_no1', 1], ['java_no2', 2], ['python_no3', 3], ['golang', 4]])
df_a.plot()

【Pandas学习笔记02】- 数据处理高阶用法_python

总结

本文主要介绍 Pandas 工具集的高阶操作,操作原理与数据库中的SQL有着异曲同工之妙,能够帮助我们解决日常数据的分析处理等操作。

举报

相关推荐

0 条评论