0
点赞
收藏
分享

微信扫一扫

Window下安装 Mongodb,并实现单点事务

DT_M 2023-11-09 阅读 46

目录

一、排序的概念

二、插入排序  

1、直接插入排序 

直接插入排序的特性总结:

2、希尔排序

希尔排序的特性总结:

 三、选择排序

1、直接选择排序 

时间复杂度

2、堆排序—排升序(建大堆)

向下调整函数

堆排序函数

代码完整版: 

 头文件

 函数文件

 测试文件


一、排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

内部排序:数据元素全部放在内存中的排序。

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

 

二、插入排序  

比如,在实际中我们玩扑克牌时,就用了插入排序的思想

1、直接插入排序 

直接插入排序的算法过程如下:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

 我们来看一下代码的运行过程:

void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++) {
		int end = i;
		int tmp = a[i + 1];
		while (end >= 0) {
			if (a[end] > tmp) {
				a[end + 1] = a[end];
				end--;
			}
			else {
				break;
			}
		}
		a[end + 1] = tmp;
	}
}
  • 函数参数:指针a接收数组,n接收数组元素个数。
  • 首先,外层循环从第一个元素开始遍历到倒数第二个元素,因为在内层循环中需要比较当前元素和前一个元素的大小,所以最后一个元素不需要再比较。
  • 在外层循环中,我们将当前元素的下一个元素作为待插入元素,将当前元素的下标保存在变量end中,这个变量表示当前元素在已排序部分中的位置。
  • 接下来while循环中,我们在已排序部分从后往前遍历,比较当前元素和已排序部分中的元素大小,如果当前元素小于已排序部分中的元素,则将已排序部分中的元素后移一位,直到找到当前元素的正确位置。
  • 最后,我们将待插入元素插入到正确的位置,即end+1的位置。
  • 内层循环结束后,当前元素已经被插入到了正确的位置,我们继续外层循环,处理下一个元素,直到所有元素都被插入到正确的位置。

直接插入排序的特性总结:

2、希尔排序

希尔排序的算法过程如下:

  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对每个子序列进行插入排序;
  4. 将各个子序列中的排序结果合并成一个序列。

代码如下:

void ShellSort(int* a, int n)
{
	//1、gap >  1 预排序
	//2、gap == 1 直接插入排序
	int gap = n;
	while (gap > 1) {
		gap = gap / 3 + 1;// +1可以保证最后一次一定是1
		for (int i = 0; i < n - gap; i++) {
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0) {
				if (a[end] > tmp) {
					a[end + gap] = a[end];
					end -= gap;
				}
				else {
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}
  • 首先,我们选择一个增量gap=n,然后将序列分成若干个子序列,对每个子序列进行插入排序。
  • 在这个实现中,我们使用了一个while循环来计算增量gap,每次将gap除以3并加1,保证gap最小为1,此时进行直接插入排序。
  • 在外层while循环中,我们将序列分成若干个子序列,每个子序列的长度为gap。然后,我们对每个子序列进行插入排序,将子序列中的元素插入到已排序部分的正确位置。
  • 在内层循环中,我们使用了一个变量end来表示当前元素的下标,每次将end减去gap,直到找到当前元素的正确位置。然后,我们将待插入元素插入到正确的位置,即end+gap的位置。

  • 内层循环结束后,当前子序列已经排好序了,我们继续外层while循环,处理下一个子序列,直到所有子序列都被排好序了。

图中颜色相同的值为当前<间距gap>下的子序列,从前往后依次比较每个子序列(也就是相距 gap 个位置的值的大小)。

希尔排序的特性总结:

 三、选择排序

1、直接选择排序 

我们先看代码,然后通过一个例子就能明白了。 

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int maxi = begin, mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] > a[maxi])
			{
				maxi = i;
			}

			if (a[i] < a[mini])
			{
				mini = i;
			}
		}

		Swap(&a[begin], &a[mini]);
		// 如果maxi和begin重叠,修正一下即可
		if (begin == maxi)
		{
			maxi = mini;
		}

		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}
  • 代码中的变量begin和end分别表示当前未排序的元素范围的起始和结束位置。
  • 在while循环中,每次从begin到end的范围内找到最大和最小的元素,分别用maxi和mini记录它们的下标。
  • 然后将mini所指向的元素与begin所指向的元素交换位置,将maxi所指向的元素与end所指向的元素交换位置。
  • 如果maxi和begin重叠,说明mini所指向的元素是当前未排序元素中最大的,需要将maxi更新为mini。
  • 最后,begin指针向后移动一位,end指针向前移动一位,继续进行下一轮排序。 
begin = 0
end = 5
maxi = 2
mini = 5
begin = 1
end = 4
maxi = 3
mini = 1

时间复杂度

2、堆排序—排升序(建大堆)

向下调整函数

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;

	while (child < n){
		if (child + 1 < n && a[child + 1] > a[child])
			++child;

		if (a[child] > a[parent]){
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}

		else
			break;
	}
}
  • 通过传入参数获取到当前的左子节点的位置。
  • 当child位置小于数组元素个数时进行判断。
  • 进入循环,首先判断检查右子节点是否存在并且比左子节点的值,如果是,将 child 更新为右子节点的索引,以确保选择更小的子节点进行比较。
  • 比较选定的子节点的值与父节点的值,如果子节点的值大于父节点的值,就交换它们。
  • 更新parent为新的子节点位置,更新child为新的左子节点位置,然后继续比较和交换,直到不再需要交换为止。
  • 如果当前子节点不大于当前父节点则停止循环。

堆排序函数

// 排升序
void HeapSort(int* a, int n)
{
	// 建大堆
	for (int i = (n-1-1)/2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
  1.  在HeapSort函数中,第一个循环调用了AdjustDown函数,将待排序数组构建成了一个大堆。但是,这个大堆并不是完全有序的,只是满足了大堆的性质,即每个节点的值都大于或等于其左右子节点的值。因此,需要进行第二个while循环,将大堆中的元素依次取出,交换堆顶元素和数组末尾元素,并重新调整大堆,直到整个数组有序。
  2. 第二个while循环中,将堆顶元素与数组末尾元素交换,然后将剩余元素重新调整为大堆。这样,每次交换后,数组末尾的元素就是当前大堆中的大值,而剩余元素仍然满足大堆的性质。重复以上步骤,直到整个数组有序。

代码完整版: 

 头文件

#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>

void PrintArray(int* a, int n);
void InsertSort(int* a, int n);
void ShellSort(int* a, int n);
void SelectSort(int* a, int n);
void HeapSort(int* a, int n);

 函数文件

#include "sort.h"

void PrintArray(int* a, int n)
{
	for (int i = 0; i < n; i++) {
		printf("%d ", a[i]);
	}
	printf("\n");
}

void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++) {
		int end = i;
		int tmp = a[i + 1];
		while (end >= 0) {
			if (a[end] > tmp) {
				a[end + 1] = a[end];
				end--;
			}
			else {
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

void ShellSort(int* a, int n)
{
	//1、gap >  1 预排序
	//2、gap == 1 直接插入排序
	int gap = n;
	while (gap > 1) {
		gap = gap / 3 + 1;// +1可以保证最后一次一定是1
		for (int i = 0; i < n - gap; i++) {
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0) {
				if (a[end] > tmp) {
					a[end + gap] = a[end];
					end -= gap;
				}
				else {
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin < end)
	{
		int maxi = begin, mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] > a[maxi])
			{
				maxi = i;
			}

			if (a[i] < a[mini])
			{
				mini = i;
			}
		}

		Swap(&a[begin], &a[mini]);
		// 如果maxi和begin重叠,修正一下即可
		if (begin == maxi)
		{
			maxi = mini;
		}

		Swap(&a[end], &a[maxi]);

		++begin;
		--end;
	}
}

void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n) {
		if (child + 1 < n && a[child + 1] > a[child]) {
			child++;
		}
		if (a[child] > a[parent]) {
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			break;
		}
	}
}

void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; --i) {
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0) {
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

 测试文件

#include"Sort.h"
#include<time.h>

void TestInsertSort()
{
	//int a[] = { 4,7,1,9,3,4,5,8,3,2 };
	int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	PrintArray(a, sizeof(a) / sizeof(int));
	InsertSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestSelectSort()
{
	//int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	int a[] = { 9,7,1,3,3,0,5,8,3,2,3 };
	PrintArray(a, sizeof(a) / sizeof(int));
	SelectSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestHeapSort()
{
	int a[] = { 4,7,1,9,3,6,5,8,3,2,0 };
	PrintArray(a, sizeof(a) / sizeof(int));
	HeapSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}

void TestOP()
{
	srand(time(0));
	const int N = 1000000;//运行时间较长可自行更改大小
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);


	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand();
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	InsertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n",  end2 - begin2);
	printf("SelcetSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n",   end4 - begin4);

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);
}

int main()
{
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();

	TestOP();

	return 0;
}

举报

相关推荐

0 条评论