题目链接:传送门
DAG的最大独立集 = 最小路径覆盖
最小路径覆盖 = 点数 – 最大匹配数
把原图拆点做做小路径覆盖即可
但这个题不用拆点原图就可以看成二分图
注意不直接相连的点也算相连
类似于floyed的处理,枚举中转点即可
怎么这么传递闭包
#include <bits/stdc++.h>
#define
using namespace std;
int n, m, a, b, g[A], ans; bool ap[A][A], vis[A];
bool check(int x) {
for (int i = 1; i <= n; i++)
if (ap[x][i] and !vis[i]) {
vis[i] = 1;
if (!g[i] or check(g[i])) {
g[i] = x;
return true;
}
}
return false;
}
int main(int argc, char const *argv[]) {
cin >> n >> m;
for (int i = 1; i <= m; i++) scanf("%d%d", &a, &b), ap[a][b] = 1;
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i != j and j != k)
ap[i][j] |= ap[i][k] && ap[k][j];
for (int i = 1; i <= n; i++) {
memset(vis, 0, sizeof vis);
if (check(i)) ans++;
}
cout << n - ans << endl;
return 0;
}