0
点赞
收藏
分享

微信扫一扫

Python之路【第七篇】:线程、进程和协程

1.Python线程

  Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time

def show(arg):
time.sleep(1)
print 'thread'+str(arg)

for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start()

print 'main thread stop'

  上述代码创建了10个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

  更多方法:

  • Start      线程准备就绪,等待CPU调度
  • setName    为线程设置名称
  • getName    获取线程名称
  • setDaemon  设置为后台线程或前台线程(默认)

如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止

如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

  • join       逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
  • run        线程被cpu调度后自动执行线程对象的run方法

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#自定义线程类
import threading
import time


class MyThread(threading.Thread):
def __init__(self,num):
threading.Thread.__init__(self)
self.num = num

def run(self):#定义每个线程要运行的函数

print("running on number:%s" %self.num)

time.sleep(3)

if __name__ == '__main__':

t1 = MyThread(1)
t2 = MyThread(2)
t1.start()
t2.start()

自定义线程类

 

1.1 线程锁(Lock、RLock)

  由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,当多个线程同时修改同一条数据时可能会出现脏数据,所以,出现了线程锁 - 同一时刻允许一个线程执行操作。

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#未使用锁
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import time

gl_num = 0

def show(arg):
global gl_num
time.sleep(1)
gl_num +=1
print gl_num

for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start()

print 'main thread stop'

未使用锁

#!/usr/bin/env python
#coding:utf-8

import threading
import time

gl_num = 0

lock = threading.RLock()

def Func():
lock.acquire()
global gl_num
gl_num +=1
time.sleep(1)
print gl_num
lock.release()

for i in range(10):
t = threading.Thread(target=Func)
t.start()

 

1.2 信号量(Semaphore)

  互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据 ,比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去。

import threading,time

def run(n):
semaphore.acquire()
time.sleep(1)
print("run the thread: %s" %n)
semaphore.release()

if __name__ == '__main__':

num= 0
semaphore = threading.BoundedSemaphore(5) #最多允许5个线程同时运行
for i in range(20):
t = threading.Thread(target=run,args=(i,))
t.start()

 

1.3 事件(event)

  python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

  事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

  • clear:将“Flag”设置为False
  • set:将“Flag”设置为True

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import threading


def do(event):
print 'start'
event.wait()
print 'execute'


event_obj = threading.Event()
for i in range(10):
t = threading.Thread(target=do, args=(event_obj,))
t.start()

event_obj.clear()
inp = raw_input('input:')
if inp == 'true':
event_obj.set()

 

1.4 条件(Condition)

  使得线程等待,只有满足某条件时,才释放n个线程

import threading

def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release()

if __name__ == '__main__':

con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()

while True:
inp = input('>>>')
if inp == 'q':
break
con.acquire()
con.notify(int(inp))
con.release()

def condition_func():

ret = False
inp = input('>>>')
if inp == '1':
ret = True

return ret


def run(n):
con.acquire()
con.wait_for(condition_func)
print("run the thread: %s" %n)
con.release()

if __name__ == '__main__':

con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()

 

1.5 Timer

  定时器,指定n秒后执行某操作

from threading import Timer


def hello():
print("hello, world")

t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed

 

2.Python 进程

from multiprocessing import Process
import threading
import time

def foo(i):
print 'say hi',i

for i in range(10):
p = Process(target=foo,args=(i,))
p.start()

  注意:由于进程之间的数据需要各自持有一份,所以创建进程需要的非常大的开销。

 

2.1 进程数据共享

  进程各自持有一份数据,默认无法共享数据

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#进程间默认无法数据共享
#!/usr/bin/env python
#coding:utf-8

from multiprocessing import Process
from multiprocessing import Manager

import time

li = []

def foo(i):
li.append(i)
print 'say hi',li

for i in range(10):
p = Process(target=foo,args=(i,))
p.start()

print 'ending',li

进程间默认无法数据共享

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#方法一,Array
from multiprocessing import Process,Array
temp = Array('i', [11,22,33,44])

def Foo(i):
temp[i] = 100+i
for item in temp:
print i,'----->',item

for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()

#方法二:manage.dict()共享数据
from multiprocessing import Process,Manager

manage = Manager()
dic = manage.dict()

def Foo(i):
dic[i] = 100+i
print dic.values()

for i in range(2):
p = Process(target=Foo,args=(i,))
p.start()
p.join()

View Code

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#类型对应表
'c': ctypes.c_char, 'u': ctypes.c_wchar,
'b': ctypes.c_byte, 'B': ctypes.c_ubyte,
'h': ctypes.c_short, 'H': ctypes.c_ushort,
'i': ctypes.c_int, 'I': ctypes.c_uint,
'l': ctypes.c_long, 'L': ctypes.c_ulong,
'f': ctypes.c_float, 'd': ctypes.c_double

类型对应表

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

# Code
from multiprocessing import Process, Queue

def f(i,q):
print(i,q.get())

if __name__ == '__main__':
q = Queue()

q.put("h1")
q.put("h2")
q.put("h3")

for i in range(10):
p = Process(target=f, args=(i,q,))
p.start()

Code

  当创建进程时(非使用时),共享数据会被拿到子进程中,当进程中执行完毕后,再赋值给原值。

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#进程锁实例
#!/usr/bin/env python
# -*- coding:utf-8 -*-

from multiprocessing import Process, Array, RLock

def Foo(lock,temp,i):
"""
将第0个数加100
"""
lock.acquire()
temp[0] = 100+i
for item in temp:
print i,'----->',item
lock.release()

lock = RLock()
temp = Array('i', [11, 22, 33, 44])

for i in range(20):
p = Process(target=Foo,args=(lock,temp,i,))
p.start()

进程锁实例

 

2.2 进程池

  进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

  进程池中有两个方法:

  • apply
  • apply_async

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Process,Pool
import time

def Foo(i):
time.sleep(2)
return i+100

def Bar(arg):
print arg

pool = Pool(5)
#print pool.apply(Foo,(1,))
#print pool.apply_async(func =Foo, args=(1,)).get()

for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)

print 'end'
pool.close()
pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。

 

3.协程

  线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

  协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

  协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

 

3.1 greenlet

#!/usr/bin/env python
# -*- coding:utf-8 -*-


from greenlet import greenlet


def test1():
print 12
gr2.switch()
print 34
gr2.switch()


def test2():
print 56
gr1.switch()
print 78

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

 

4.gevent

import gevent

def foo():
print('Running in foo')
gevent.sleep(0)
print('Explicit context switch to foo again')

def bar():
print('Explicit context to bar')
gevent.sleep(0)
print('Implicit context switch back to bar')

gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])

  遇到IO操作自动切换:

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

#!/usr/bin/env python
# -*- coding:utf-8 -*-


from gevent import monkey

monkey.patch_all()
import threading
import gevent
import time


def eat():
print(threading.current_thread().getName())
print('eat food 1')
time.sleep(20)
print('eat food 2')


def play():
print(threading.current_thread().getName())
print('play 1')
time.sleep(20)
print('play 2')


g1 = gevent.spawn(eat)
g2 = gevent.spawn(play)
gevent.joinall([g1, g2])
print('主')

View Code

Python之路【第七篇】:线程、进程和协程_Code

Python之路【第七篇】:线程、进程和协程_进程池_02

from gevent import monkey; monkey.patch_all()
import gevent
import urllib2

def f(url):
print('GET: %s' % url)
resp = urllib2.urlopen(url)
data = resp.read()
print('%d bytes received from %s.' % (len(data), url))

gevent.joinall([
gevent.spawn(f, 'https://www.python.org/'),
gevent.spawn(f, 'https://www.yahoo.com/'),
gevent.spawn(f, 'https://github.com/'),
])

View Code

 

 


转世燕还故榻,为你衔来二月的花。



举报

相关推荐

0 条评论