0
点赞
收藏
分享

微信扫一扫

(离散)设 G 是群,试证:若对任何 a,b ∈G , 均有 a^3b^3 = (ab)^3,a^4b^4 = (ab)^4,a^5b^5 = (ab)^5,则G是 交换群

慎壹 2022-08-02 阅读 52
编程语言


设 G 是群,试证:若对任何 a,b ∈G , 均有 a^3b^3 = (ab)^3,a^4b^4 = (ab)^4,a^5b^5 = (ab)^5,则G是 交换群。

(离散)设 G 是群,试证:若对任何 a,b ∈G , 均有 a^3b^3 = (ab)^3,a^4b^4 = (ab)^4,a^5b^5 = (ab)^5,则G是 交换群_其它

 

分析:要证G可交换则要证得  a*b = b*a   ,所给的条件已有3次幂、4次幂、5次幂,就是没有2次幂,因此我们首先要证明2次幂成立,即 a² * b² = ( a*b )² 。

 

证明:

(离散)设 G 是群,试证:若对任何 a,b ∈G , 均有 a^3b^3 = (ab)^3,a^4b^4 = (ab)^4,a^5b^5 = (ab)^5,则G是 交换群_其它_02

 

 

               

(离散)设 G 是群,试证:若对任何 a,b ∈G , 均有 a^3b^3 = (ab)^3,a^4b^4 = (ab)^4,a^5b^5 = (ab)^5,则G是 交换群_其它_03

 

 

举报

相关推荐

0 条评论