0
点赞
收藏
分享

微信扫一扫

数学建模(三):预测

目录

✨前言

👉🏻历史回顾👈🏻

🔍1、什么是预测?

📑2、BP神经网络预测算法

✏️2.1 BP神经网络算法基本原理

🗝️2.2 基于多指标影响的预测算法

🗝️2.3 基于时间序列影响的预测算法

📖三、BP神经网络预测的分析与总结

📝1、大量数据集

📝2、数据预处理

📝3、n的取值


✨前言

      在数学建模比赛中,预测也是我们最常见的问题之一,特别是每年的国赛C题,C题不出意外都为统计题。博主在去年的国赛C题和今年的长三角数学建模中都有遇到预测类的题目,在预测类问题中时间预测多指标预测最为常见,接下来就详细讲一下如何利用BP神经网络去解决该类问题

👉🏻历史回顾👈🏻

数学建模入门篇零基础如何入门数学建模?_小羊不会飞的博客
长三角实战篇长三角数学建模------赛后总结_小羊不会飞的博客
数学建模(一):插值数学建模(一):插值_小羊不会飞的博客-CSDN博客
数学建模(二):优化数学建模(二):优化_小羊不会飞的博客-CSDN博客

🔍1、什么是预测?

        预测在百度百科上的定义:“预测是指人们利用已经掌握的知识和手段,预先推知和判断事物未来发展状况的一种活动,具体说来,就是人们根据事物过去发展变化的客观过程某些规律性,根据事物运动变化的状态,运用各种定性定量分析方法,对事物未来可能出现的趋势和可能达到的水平所进行的科学推测”。

简而言之,就是根据已知的数据然后通过一定的数学手段预测得到未知数据!

📑2、BP神经网络预测算法

✏️2.1 BP神经网络算法基本原理

关于BP神经网络算法的基本原理,博主有一篇专门的文章讲到,这里不再做赘述,请看下文👇🏻

关于BP神经网络的预测类问题,博主将主要其分为:

1、受相关指标影响的数据预测

2、基于历史值影响的数据预测

🗝️2.2 基于多指标影响的预测算法

样本编号x1x2x3xnTarget(即y)
1
2
n

该题目中“辛烷值”的数值受吸光度Xi..Xn的影响,这个吸光度就是属于多指标,这种情况我们需要把数据导入,input就是各个吸光度的数据,output就是“辛烷值”这一列的数据,我们只需要把inputoutput导入进matlab就可;

代码参数的调节和数据的获取可以私信博主!

%% 此程序为matlab编程实现的BP神经网络
% 清空环境变量
%clear
%close all
%clc
%disp(['-----------------------第一步和第二步自己载入数据--------------------------'])

%%第一步 读取数据
%input=randi([1 20],200,2);  %载入输入数据
%output=input(:,1)+input(:,2);  %载入输出数据

%% 第二步 设置训练数据和预测数据
%input_train = input(1:190,:)';
%output_train =output(1:190,:)';
%input_test = input(191:200,:)';
%output_test =output(191:200,:)';

input_train = input(1:40,:)';
output_train =output(1:40,:)';
input_test = input(41:50,:)';
output_test =output(41:50,:)';



%节点个数
inputnum=2; % 输入层节点数量
hiddennum=5;% 隐含层节点数量
outputnum=1; % 输出层节点数量
%% 第三本 训练样本数据归一化
[inputn,inputps]=mapminmax(input_train);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化
[outputn,outputps]=mapminmax(output_train);
%% 第四步 构建BP神经网络
net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练

W1= net. iw{1, 1};%输入层到中间层的权值
B1 = net.b{1};%中间各层神经元阈值

W2 = net.lw{2,1};%中间层到输出层的权值
B2 = net. b{2};%输出层各神经元阈值

%% 第五步 网络参数配置( 训练次数,学习速率,训练目标最小误差等)
net.trainParam.epochs=100000000;         % 训练次数,这里初始设置为1000次,后续自行修改
net.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.00001
.......
完整代码:https://download.csdn.net/download/m0_55858611/86404435?spm=1001.2014.3001.5503

🗝️2.3 基于时间序列影响的预测算法

时间(天)肿瘤体积(mm^3)
11.0
21.3
31.6
41.8
52.1
62.5
72.9
83.3
93.9
104.5
115.2
126.0
..............

%% 此程序为matlab编程实现的BP神经网络
% 清空环境变量
%clear
%close all
%clc
disp(['----------------第一步和第二步可以自己载入数据-------------------'])
%关于时间序列,我们要先处理一遍,弄成y(t)=f(y(t-n),y(t-n+1),....,y(t-1))的模型

%% 第一步 读取数据
%input=randi([1 20],200,2);  %载入输入数据
%output=input(:,1)+input(:,2);  %载入输出数据

%% 第二步 设置训练数据和预测数据
%input_train = input(1:190,:)';
%output_train =output(1:190,:)';
%input_test = input(191:200,:)';
%output_test =output(191:200,:)';

input_train = input(1:25,:)';
output_train =output(1:25,:)';
input_test = input(20:27,:)';
output_test =output(20:27,:)';



%节点个数
inputnum=2; % 输入层节点数量
hiddennum=5;% 隐含层节点数量
outputnum=1; % 输出层节点数量
%% 第三本 训练样本数据归一化
[inputn,inputps]=mapminmax(input_train);%归一化到[-1,1]之间,inputps用来作下一次同样的归一化
[outputn,outputps]=mapminmax(output_train);
%% 第四步 构建BP神经网络
net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm');% 建立模型,传递函数使用purelin,采用梯度下降法训练

W1= net. iw{1, 1};%输入层到中间层的权值
B1 = net.b{1};%中间各层神经元阈值

W2 = net.lw{2,1};%中间层到输出层的权值
B2 = net. b{2};%输出层各神经元阈值

%% 第五步 网络参数配置( 训练次数,学习速率,训练目标最小误差等)
net.trainParam.epochs=100000000;         % 训练次数,这里初始设置为1000次,后续自行修改
net.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.00001

%设置只有训练集,关闭自动划分训练集、测试集,如果关闭则可能会出现过拟合现象
    net.dividefcn='';
%% 第六步 BP神经网络训练
net=train(net,inputn,outputn);%开始训练,其中inputn,outputn分别为输入输出样本

.....

完整代码:https://download.csdn.net/download/m0_55858611/86404438?spm=1001.2014.3001.5501

📖三、BP神经网络预测的分析与总结

📝1、大量数据集

首先我们在机器学习的时候无论是做预测还是做图像识别,我们都需要大量数据集的支撑,因为小量数据跑出来的网络具有不确定性,跑出来的结果往往不是很好。

📝2、数据预处理

在训练网络的时候,我们要保证输入的数据一定是足够干净且准确的,也就是说训练集中不可以出现异常值,空缺值,所以我们在拿到一大堆数据时,先对数据进行预处理,然后再训练网络,这样预测得到的数据精准度会很高。

📝3、n的取值

在进行时间序列预测时,上面有提到我们需要取前n个数,那么这个n值取多少才是最合适的呢,这个需要我们好好去思考一下!

举报

相关推荐

0 条评论