0
点赞
收藏
分享

微信扫一扫

C# 如何实现一个事件总线

烟中雯城 2024-02-20 阅读 20

图像卷积、步长、填充特征图、多通道卷积权重共享、感受野、池化

卷积神经网络的一些基本概念:图像卷积、步长、填充特征图、多通道卷积权重共享、感受野、池化

1.图像卷积、步长、填充

2.特征图与多通道卷积

3.权重共享

当对每组进行卷积时,不同的通道使用不同的卷积核。但当卷积核在同一幅图的不同空间位置进行卷积时,采取的是权重共享的模式,这是卷积神经网络非常重要的概念。

卷积神经网络某一层的参数量由输入通道数N、输出通道数M和卷积核的大小r决定。

一层连接的参数量=N×M×r×r

4.感受野(Receptive Field)

可以将感受野理解为视觉感受区域的大小。

在卷积神经网络中,感受野是特征平面上的一个点(即神经元)在输入图上对应的区域,如图1.18所示。

图1.18

如果一个神经元的大小受到输入层N×N的神经元区域的影响,那么可以说该神经元的感受野是N×N,因为它反映了N×N区域的信息。

图1.18:Conv2中的像素点为5,是由Conv1的2×2的区域得来的,而该2×2区域是由原始图像的5×5区域计算而来,因此该像素的感受野是5×5。可以看出,感受野越大,得到的全局信息就越多。

5.池化(Pooling)

图1.18中,从原图到Conv1再到Conv2,图像越来越小,每过一级项相当于一次降采样,这就是池化。

池化通过步长不为1的卷积来实现,也可以通过插值采样实现,本质上没有区别,只是权重不同。

池化作用:

  • 池化层可以对输入的特征图进行压缩,一方面使特征图变小,简化网络计算的复杂度

  • 另一方面可以提取主要特征,有利于降低过拟合风险

    在这里插入图片描述

常见池化分类
(图1.19)
平均池化(Average Pooling)最大池化(Max Pooling)
概念计算池化区域所有元素的平均值作为该区域池化后的值池化区域的最大值作为该区域池化后的值
特点能够保留整体数据的特征,能较好的突出背景信息能更好地保留纹理特征

套用卷积通用公式:
o u t p u t = [ ( i n p u t − f i l t e r S i z e + 2 ∗ p a d d i n g ) / s t r i d e ] + 1 output=[(input-filterSize+2*padding)/stride]+1 output=[(inputfilterSize+2padding)/stride]+1
PS:公式是向下取整

举报

相关推荐

0 条评论