链接
卷积神经网络基础
卷积神经网络高级部分
刘二大人笔记链接
刘二大人视频链接
补充
卷积conv2d
- convolution中的卷积核数量N和输入Channels相同,每N个卷积核计算组成一个输出数据output,每N个卷积核作为一个filters,M个filters组成M维outputs
-
一共需要 M ( 输 出 C h a n n e l s ) ∗ N ( 输 入 C h a n n e l s ) M(输出Channels)*N(输入Channels) M(输出Channels)∗N(输入Channels)个卷积核
-
一次卷积后输出的每个Channels的数据大小会变成 ( i n p u t s w i d t h − k e r n e l s i z e + 1 ) ∗ ( i n p u t s h e i g h t − k e r n e l s i z e + 1 ) (inputs_{width}-kernel_{size}+1)*(inputs_{height}-kernel_{size}+1) (inputswidth−kernelsize+1)∗(inputsheight−kernelsize+1)
-
可以用padding参数使每个Channels数据大小保持不变,padding = 1 表示增加一圈,就是边缘的两行两列。
-
卷积(convolution)后,C(Channels)可变可不变(一般都变),W(width)和H(Height)可变可不变,取决于是否padding和kernel的大小。
池化MaxPool2d
torch.nn.MaxPool2d(2)
- subsampling(或pooling)后,Channels不变,W和H变
整体流程
代码实现
代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# 老样子准备数据
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/mnist/', train=True, download=False,
transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/dataset/mnist/', train=False,
download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 设计神经网络
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2) # 只是用池化stride为2的池化层
self.fc = torch.nn.Linear(320, 10)
# 为320的计算过程(根据forward中的值进行)
# 对于单个图像
# 1*28*28 ---> 10*24*24 ---> 10*12*12 ---> 20*8*8 ---> 20*4*4 = 320
# 全连接 : 320 ---> 10
def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
# 手写数据集只有一个channels,n为 batch_size
batch_size = x.size(0) # 取出batch_size
x = F.relu(self.pooling(self.conv1(x))) # 先卷积后池化
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # 为进行全连接做准备,先从三维展成二维矩阵, -1 此处自动算出的是320
x = self.fc(x) # 全连接到10维度,一共10种
return x
model = Net()
# 损失与优化方法
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练方法
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
outputs = model(inputs) # 训练
loss = criterion(outputs, target) # 算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 更新优化
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()