小故事
老王(操作系统)有一个功能强大的算盘(CPU),现在想把它租出去,赚一点外快
小南、小女(线程)来使用这个算盘来进行一些计算,并按照时间给老王支付费用
但小南不能一天24小时使用算盘,他经常要小憩一会(sleep),又或是去吃饭上厕所(阻塞 io 操作),有
时还需要一根烟,没烟时思路全无(wait)这些情况统称为(阻塞)
在这些时候,算盘没利用起来(不能收钱了),老王觉得有点不划算
另外,小女也想用用算盘,如果总是小南占着算盘,让小女觉得不公平
于是,老王灵机一动,想了个办法 [ 让他们每人用一会,轮流使用算盘 ]
这样,当小南阻塞的时候,算盘可以分给小女使用,不会浪费,反之亦然
最近执行的计算比较复杂,需要存储一些中间结果,而学生们的脑容量(工作内存)不够,所以老王申请了
一个笔记本(主存),把一些中间结果先记在本上
计算流程是这样的
但是由于分时系统,有一天还是发生了事故
小南刚读取了初始值 0 做了个 +1 运算,还没来得及写回结果
老王说 [ 小南,你的时间到了,该别人了,记住结果走吧 ],于是小南念叨着 [ 结果是1,结果是1…] 不甘心地
到一边待着去了(上下文切换)
老王说 [ 小女,该你了 ],小女看到了笔记本上还写着 0 做了一个 -1 运算,将结果 -1 写入笔记本
这时小女的时间也用完了,老王又叫醒了小南:[小南,把你上次的题目算完吧],小南将他脑海中的结果 1 写
入了笔记本
小南和小女都觉得自己没做错,但笔记本里的结果是 1 而不是 0
Java 的体现
两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗
package com.example.demo.hmjuc;
/**
* @author zhangqi
* @date 2022/4/14 20:24
*/
public class Test9 {
static int count = 0;
public static void main(String[] args) throws InterruptedException {
while (true) {
// 新建一个线程 使用lambda表达式
Thread thread = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
count++;
}
});
thread.start();
Thread thread1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
count--;
}
});
thread1.start();
thread.join();
thread1.join();
if (count != 0) {
System.out.println("count = " + count);
break;
}
}
}
}
产生的原因
以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理
解,必须从字节码来进行分析
例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 自减
putstatic i // 将修改后的值存入静态变量i
而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:
如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:
但多线程下这 8 行代码可能交错运行:
出现负数的情况
出现正数的情况
临界区 Critical Section
一个程序运行多个线程本身是没有问题的
问题出在多个线程访问共享资源
多个线程读共享资源其实也没有问题
在多个线程对共享资源读写操作时发生指令交错,就会出现问题
一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区
例如,下面代码中的临界区
static int counter = 0;
static void increment()
// 临界区
{
counter++; }
static void decrement()
// 临界区
{
counter--; }
竞态条件 Race Condition
多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件
synchronized关键字解决
为了避免临界区的竞态条件发生,有多种手段可以达到目的。
阻塞式的解决方案:synchronized,Lock
非阻塞式的解决方案:原子变量
本次课使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一
时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁
的线程可以安全的执行临界区内的代码,不用担心线程上下文切换
注意
虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:
互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码
同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点
synchronized
语法
synchronized(对象) // 线程1, 线程2(blocked)
{
临界区
}
具体代码
package com.example.demo.hmjuc;
/**
* @author zhangqi
* @date 2022/4/14 20:24
*/
public class Test10 {
static int count = 0;
static final Object LOCK = new Object();
public static void main(String[] args) throws InterruptedException {
while (true) {
// 新建一个线程 使用lambda表达式
Thread thread = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (LOCK) {
count++;
}
}
});
thread.start();
Thread thread1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
synchronized (LOCK) {
count--;
}
}
});
thread1.start();
thread.join();
thread1.join();
if (count != 0) {
System.out.println("count = " + count);
break;
}
}
}
}
面向对象优化
package com.example.demo.hmjuc;
/**
* @author zhangqi
* @date 2022/4/14 20:24
*/
public class Test12 {
public static void main(String[] args) throws InterruptedException {
Room room = new Room();
while (true) {
// 新建一个线程 使用lambda表达式
Thread thread = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
room.increment1();
}
});
thread.start();
Thread thread1 = new Thread(() -> {
for (int i = 0; i < 5000; i++) {
room.decrement1();
}
});
thread1.start();
thread.join();
thread1.join();
if (room.getCount1() != 0) {
System.out.println("count = " + room.getCount1());
break;
}
}
}
}
class Room {
private int count;
public void increment() {
synchronized (this) {
count++;
}
}
public void decrement() {
synchronized (this) {
count--;
}
}
public int getCount() {
synchronized (this) {
return count;
}
}
// -------------------------------------
public synchronized void increment1() {
count++;
}
public synchronized void decrement1() {
count--;
}
public synchronized int getCount1() {
return count;
}
}
原因:
你可以做这样的类比:
synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人
进行计算,线程 t1,t2 想象成两个人
当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行
count++ 代码
这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切
换,阻塞住了
这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),
这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才
能开门进入
当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥
匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码
方法上的 synchronized
class Test{
public synchronized void test() {
}
}
等价于
class Test{
public void test() {
synchronized(this) {
}
}
}
class Test{
public synchronized static void test() {
}
}
等价于
class Test{
public static void test() {
synchronized(Test.class) {
}
}
}
不加 synchronized 的方法
不加 synchronzied 的方法就好比不遵守规则的人,不去老实排队(好比翻窗户进去的)