0
点赞
收藏
分享

微信扫一扫

[线性代数]矩阵变换在几何中的体现

言午栩 2022-04-14 阅读 146
线性代数

1.缩放矩阵

几何图示

在这里插入图片描述

对应公式

x ′ = − x y ′ = y \begin{aligned} &x^{\prime}=-x \\ &y^{\prime}=y \end{aligned} x=xy=y

[ x ′ y ′ ] = [ s x 0 0 s y ] [ x y ] \left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\left[\begin{array}{cc} s_{x} & 0 \\ 0 & s_{y} \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right] [xy]=[sx00sy][xy]

带入数据

[ x ′ y ′ ] = [ 0.5 0 0 1 ] [ x y ] \left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\left[\begin{array}{cc} 0.5 & 0 \\ 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right] [xy]=[0.5001][xy]


2.反转矩阵

几何图示

在这里插入图片描述

对应公式

x ′ = − x y ′ = y \begin{aligned} &x^{\prime}=-x \\ &y^{\prime}=y \end{aligned} x=xy=y

[ x ′ y ′ ] = [ − 1 0 0 1 ] [ x y ] \left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right] [xy]=[1001][xy]

3.切片(剪切)矩阵

几何图示

在这里插入图片描述

对应公式

[ x ′ y ′ ] = [ 1 a 0 1 ] [ x y ] \left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\left[\begin{array}{ll} 1 & a \\ 0 & 1 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right] [xy]=[10a1][xy]

4.旋转矩阵

几何图示

在这里插入图片描述

对应公式

R θ = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] \mathbf{R}_{\theta}=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] Rθ=[cosθsinθsinθcosθ]

推导:

  1. 取点 ( 1 , 0 ) → ( c o s θ , s i n θ ) (1,0)→(cosθ,sinθ) (1,0)(cosθ,sinθ)

( x ′ y ′ ) = ( A B C D ) ( x y ) ( cos ⁡ θ sin ⁡ θ ) = ( A B C D ) ( 1 0 ) \begin{aligned} &\left(\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right)=\left(\begin{array}{l} A & B \\ C & D \end{array}\right)\left(\begin{array}{l} x \\ y \end{array}\right)\\ &\left(\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right)=\left(\begin{array}{ll} A & B \\ C & D \end{array}\right)\left(\begin{array}{l} 1 \\ 0 \end{array}\right) \end{aligned} (xy)=(ACBD)(xy)(cosθsinθ)=(ACBD)(10)

得出 A = c o s θ , C = s i n θ A=cosθ,C=sinθ A=cosθ,C=sinθ

  1. 取点 ( 0 , 1 ) → ( − s i n θ , c o s θ ) (0,1)→(-sinθ,cosθ) (0,1)(sinθ,cosθ)
    ( − sin ⁡ θ cos ⁡ θ ) = ( A B C D ) ( 0 1 ) \begin{aligned} &\left(\begin{array}{c} -\sin \theta \\ \cos \theta \end{array}\right)=\left(\begin{array}{ll} A & B \\ C & D \end{array}\right)\left(\begin{array}{l} 0 \\ 1 \end{array}\right) \end{aligned} (sinθcosθ)=(ACBD)(01)

得出 B = − s i n θ , D = c o s θ B=-sinθ,D=cosθ B=sinθ,D=cosθ

举报

相关推荐

0 条评论