搜索与图论
模板
1. 树与图的存储( h[1]存放的便是 指向第一个节点的节点)
2. 树与图的遍历
3. 拓扑排序
4. 朴素dijkstra算法
5. 堆优化版dijkstra
6. Bellman-Ford算法
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
7. spfa 算法(队列优化的Bellman-Ford算法)
8. spfa判断图中是否存在负环
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
9. floyd算法
10. 朴素版prim算法
11. Kruskal算法
12. 染色法判别二分图
13. 匈牙利算法
时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);
if (find(i)) res ++ ;
}
1. DFS
1. 排列数字
原题链接
#include<iostream>
using namespace std;
const int N = 10;
int path[N];//保存序列
int state[N];//数字是否被用过
int n;
void dfs(int u)//u表示的是 第几个坑位
{
if(u > n)//数字填完了,输出
{
for(int i = 1; i <= n; i++)//输出方案
cout << path[i] << " ";
cout << endl;
}
for(int i = 1; i <= n; i++)//空位上可以选择的数字为:1 ~ n
{
if(!state[i])//如果数字 i 没有被用过
{
path[u] = i;//放入空位
state[i] = 1;//数字被用,修改状态
dfs(u + 1);//填下一个位
state[i] = 0;//回溯,取出 i
}
}
}
int main()
{
cin >> n;
dfs(1);
}
2. n-皇后问题
原题链接
1. 按行遍历(相当于剪枝)
#include <iostream>
using namespace std;
const int N = 20;//对角线元素 2n-1 取20防止越界
int n;
char g[N][N]; //存储图
bool col[N], dg[N], udg[N]; //udg 副对角线 /
//英语单词 column 列 diagonal 主角线 \
void dfs (int x) {
if (x == n) {
for (int i = 0; i < n; i ++) {
for (int j = 0; j < n; j ++) {
cout << g[i][j];
}
cout << endl;
}
cout << endl ;
return;
}
//x:行 y:列
for (int y = 0; y < n; y ++) {
//按行枚举 因为每一行都需要放皇后 相当于剪枝了
// 剪枝(提前判断当前方案已经错误,不再继续往下搜索,提高算法效率)
// 判断皇后能否放在这格
if (!col[y] && !dg[x + y] && !udg[n - x + y]) {
g[x][y] = 'Q';
col[y] = dg[x + y] = udg[n - x + y] = true;
dfs(x + 1);//找下一层的
//回溯的时候 记得恢复现场
col[y] = dg[x + y] = udg[n - x + y] = false;
g[x][y] = '.';
}
}
}
int main () {
cin >> n;
for (int i = 0; i < n;i ++) {
for (int j = 0; j < n; j ++) {
g[i][j] = '.'; //初始化全部空格子
}
}
dfs(0); //从第一行开始找[0:下标]
return 0;
}
2. 按每个元素遍历(没有减枝)
#include <iostream>
using namespace std;
const int N = 10;
int n;
bool row[N], col[N], dg[N * 2], udg[N * 2];
char g[N][N];
void dfs(int x, int y, int s)
{
if (y == n) y = 0, x ++ ;
if (x == n)
{
if (s == n)
{
for (int i = 0; i < n; i ++ ) puts(g[i]);
puts("");
}
return;
}
g[x][y] = '.';
dfs(x, y + 1, s);
if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])
{
row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
g[x][y] = 'Q';
dfs(x, y + 1, s + 1);
g[x][y] = '.';
row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
}
}
int main()
{
cin >> n;
dfs(0, 0, 0);
return 0;
}
补充,递归应该先把结束条件 写在前面
2. BFS(队列)
走迷宫
就是一个循环
原题链接
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
int g[N][N], d[N][N];
int bfs()
{
queue<PII> q;
memset(d, -1, sizeof d);
d[0][0] = 0;
q.push({0, 0});
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while (q.size())
{
auto t = q.front();
q.pop();
for (int i = 0; i < 4; i ++ )
{
int x = t.first + dx[i], y = t.second + dy[i];
if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
{
d[x][y] = d[t.first][t.second] + 1;
q.push({x, y});
}
}
}
return d[n - 1][m - 1];
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < m; j ++ )
cin >> g[i][j];
cout << bfs() << endl;
return 0;
}
3. 树与图的深度优先遍历
深度搜索的顺序
例题,树的重心(在深搜模板上,改一改)
原题链接
4. 树与图的广度优先遍历
图中点的层次
1. 一个点连接的是 连接它的 点
并且先连接的 后遍历
2. 处理的时候,根节点的距离直接等于0 因为其实遍历不到根节点
原题链接
#include <cstring>
#include <iostream>
using namespace std;
const int N=1e5+10;
int h[N], e[N], idx, ne[N];
int d[N]; //存储每个节点离起点的距离 d[1]=0
int n, m; //n个节点m条边
int q[N]; //存储层次遍历序列 0号节点是编号为1的节点
void add(int a, int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int bfs()
{
int hh=0,tt=0;
q[0]=1; //0号节点是编号为1的节点
memset(d,-1,sizeof d);
d[1]=0; //存储每个节点离起点的距离
//当我们的队列不为空时
while(hh<=tt)
{
//取出队列头部节点
int t=q[hh++];
//遍历t节点的每一个邻边
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
//如果j没有被扩展过
if(d[j]==-1)
{
d[j]=d[t]+1; //d[j]存储j节点离起点的距离,并标记为访问过
q[++tt] = j; //把j结点 压入队列
}
}
}
return d[n];
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
}
cout<<bfs()<<endl;
}
5. 拓扑排序(是否有环,用最后删除所有入度后,是否都入队)
有向图的拓扑序列
原题链接
1. 入度 出度的概念
***思想***
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=100010;
int h[N],e[N],ne[N],idx;
int n,m;
int q[N],d[N];//q表示队列,d表示点的入度
void add(int a,int b)
{
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
bool topsort()
{
int hh=0,tt=-1;
for(int i=1;i<=n;i++)
if(!d[i])
q[++tt]=i;//将入度为零的点入队
while(hh<=tt)
{
int t=q[hh++];
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
d[j]--;//删除点t指向点j的边
if(d[j]==0)//如果点j的入度为零了,就将点j入队
q[++tt]=j;
}
}
return tt==n-1;
//表示如果n个点都入队了话,那么该图为拓扑图,返回true,否则返回false
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof(h));//如果程序时间溢出,就是没有加上这一句
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);//因为是a指向b,所以b点的入度要加1
d[b]++;
}
if(topsort())
{
for(int i=0;i<n;i++)
printf("%d ",q[i]);
//经上方循环可以发现队列中的点的次序就是拓扑序列
//注:拓扑序列的答案并不唯一,可以从解析中找到解释
puts("");
}
else
puts("-1");
return 0;
}