0
点赞
收藏
分享

微信扫一扫

前端html+css+js实现的2048小游戏,很完善。

文章目录

计算机视觉与图像处理的区别

  • 图像处理得到的结果是处理后的图像,图像处理的目的是改善图像的质量

    • 图像增强
    • 图像复原
  • 计算机视觉得到的结果可能是一个符号、一堆数据、一个知识

    • 人脸识别
    • 人脸比对
  • 传统的图像识别的机器学习方法的一般流程包括:

    • 特征提取→数据
    • 数据→机器学习
  • 为什么要提取图像的特征

    • 提取有利于识别的信息,抑制与识别无关的或者对识别有干扰的信息
    • 把不同尺度的图像映射到一个统一的特征空间,便于应用机器学习算法。
  • 机器学习的框架:D数据,A算法,H假设空间,h* H中最好的假设(真实误差最小的假设)
    在这里插入图片描述

  • 概率近似正确
    在这里插入图片描述

人工神经元

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

感知机 - 分类任务

在这里插入图片描述
在这里插入图片描述

  • 感知机算法在线性可分的情况下,一定可以收敛,也就是一定可以找到一个能正确分类所有样本的分类函数
  • 但是同一个样本集,有可能会得到不同的解
    • 不同的初始值,不同的样本处理次序产生的结果不同
    • 不能得到全局最优的解
  • 线性不可分的时候,算法会失败

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

解决方法:次梯度

Sigmoid神经元/对数几率回归

只有激活函数的不同,sigmoid处处连续可导,输出的是对数几率
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对数损失/交叉熵损失函数

损失函数通过比较模型对样本X的预测结果与样本的真实类别y之间的差异,计算损失,差异越大,损失越大,差异越小,损失越小。

在这里插入图片描述
在这里插入图片描述

梯度下降法- 极小化对数损失函数

在这里插入图片描述

线性神经元/线性回归

均方差损失函数-线性回归常用损失函数

在这里插入图片描述

使用梯度下降法训练线性回归模型

是对w,b进行更新

在这里插入图片描述
一元导数与微分的关系: d f / d x = f ′ 一元导数与微分的关系:df/dx=f' 一元导数与微分的关系:df/dx=f
全微分: d F = ( α F / α x ) d x + ( α F / α y ) d y 全微分:dF=(αF/αx) dx+(αF/αy) dy 全微分:dF=(αF/αx)dx+(αF/αy)dy
在这里插入图片描述

线性分类器

α ∗ β = ∣ α ∣ ∗ ∣ β ∣ c o s < α , β > ( α , β 为向量),其中 ∣ β ∣ c o s < α , β > 称为 β 在 α 上的投影 α*β=|α|*|β|cos<α,β>(α,β为向量),其中|β|cos<α,β>称为β在α上的投影 αβ=αβcos<αβ>αβ为向量),其中βcos<αβ>称为βα上的投影
在这里插入图片描述

多分类器的决策面

决策面是可以把各种分类分开的一个面,在三级分类中,决策面应该在超平面的角平分线处划分
在这里插入图片描述

softmax Regression

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

训练softmax regression

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

交叉熵损失

在这里插入图片描述
在这里插入图片描述

解决参数冗余

可以使用一个正则化项:选择损失函数小且Ω也小的

在这里插入图片描述

训练softmax Classifier

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

混淆矩阵

在这里插入图片描述

合页(铰链)损失

在这里插入图片描述
在这里插入图片描述

举报

相关推荐

0 条评论