回溯
//官方题解
class Solution {
int count = 0;
public int findTargetSumWays(int[] nums, int target) {
backtrack(nums, target, 0, 0);
return count;
}
public void backtrack(int[] nums, int target, int index, int sum) {
//出口
if (index == nums.length) {
if (sum == target) {
count++;
}
} else {
//每个元素有两种添加符号的可能
backtrack(nums, target, index + 1, sum + nums[index]);
backtrack(nums, target, index + 1, sum - nums[index]);
}
}
}
动态规划
【0-1背包】子集划分
//官方题解
class Solution {
public int findTargetSumWays(int[] nums, int target) {
int sum = 0;
for (int num : nums) {
sum += num;
}
int diff = sum - target;
//出口:neg = (sum - target) / 2 是非负偶数
if (diff < 0 || diff % 2 != 0) {
return 0;
}
int neg = diff / 2;
//根据背包的容量neg来动态规划
//编程技巧:每一轮状态只与前一轮有关,于是省去一维
int[] dp = new int[neg + 1];
//不选择物品(容量为0)的方案有1个
dp[0] = 1;
//循环每个物品为一维
for (int num : nums) {
for (int j = neg; j >= num; j--) {
dp[j] += dp[j - num];
}
}
return dp[neg];
}
}