0
点赞
收藏
分享

微信扫一扫

Lucene关于实现Similarity自定义排序


开场白: 
作为一个人才网站的搜索功能,不但需要考滤搜索性能与效率,与需要注意用户体验,主要体现于用户对搜索结果的满意程度.大家都知道Lucene的排序中,如果单纯使用Lucene的DefaultSimilarity作为一个相似度的排序,意思是说总体上越相关的记录需要排得越前,但事与愿违.这样使用户体现也表现得相当糟糕.关键字"程序员"标题中也不能保证全部都匹配到(搜索结果来自 www.jobui.com 职友集) [下图] 

Lucene关于实现Similarity自定义排序_搜索

 

起因:之很长一段时间我都注重于搜索性能与速度的提高,而对于搜索结果对用户的体验却一直没有太多的关注,现在需要关注一下用户体现这个东西了.同时技术上也作为一些调整.具体表现如下. 
    1,用户最需要的搜索结果是标题命中. 
    2,因为我们从事人才招聘行业,所以职位的发布时间需要最新的. 

所以经过各部门商量,职位搜索的结果排序应该是,相关度优先,然后才是职位的发布时间倒序.即如果关键字匹配是一定要全部命中了才会排在第一位,然后再是只命中一部分关键字记录.具体如下图,(搜索"php 开发",这样的话,只有php,开发这两个关键字都全部匹配了才会排前.然后全部命中关键字的记录按职位的发布时间来递减.) 

Lucene关于实现Similarity自定义排序_搜索_02

 


开始:主要是继承Lucene中的Similarity作为一个相似度的实现,这里简单介绍一下相关的介绍 

主要是几个排序影响因素去想的 

在看代码之前先看看我们Lucene排序的一些影响因为,大家可以在搜索的时候,开启Explain的选项,这样就能看得清楚了 

比如说,我现在要搜索 "开发工程" 这些关键字,然后就会把每一个Document的得分情况都列出来,大家就知道了,同时大家有没发现,这一个详细情况跟Similarity的需要实现的方法的因素基本都是对应的..比如 idf,tf queryNorm等方法..这样大家就有一个可以参考分析的方法了. 

200.0 = (MATCH) sum of: 
  100.0 = (MATCH) weight(Name:开发^100.0 in 5), product of: 
    100.0 = queryWeight(Name:开发^100.0), product of: 
      100.0 = boost 
      1.0 = idf(docFreq=4, maxDocs=6) 
      1.0 = queryNorm 
    1.0 = (MATCH) fieldWeight(Name:开发 in 5), product of: 
      1.0 = tf(termFreq(Name:开发)=0) 
      1.0 = idf(docFreq=4, maxDocs=6) 
      1.0 = fieldNorm(field=Name, doc=5) 
  100.0 = (MATCH) weight(Name:工程^100.0 in 5), product of: 
    100.0 = queryWeight(Name:工程^100.0), product of: 
      100.0 = boost 
      1.0 = idf(docFreq=2, maxDocs=6) 
      1.0 = queryNorm 
    1.0 = (MATCH) fieldWeight(Name:工程 in 5), product of: 
      1.0 = tf(termFreq(Name:工程)=1) 
      1.0 = idf(docFreq=2, maxDocs=6) 
      1.0 = fieldNorm(field=Name, doc=5) 
  0.0 = (MATCH) weight(Info:开发^0.0 in 5), product of: 
    0.0 = queryWeight(Info:开发^0.0), product of: 
      0.0 = boost 
      1.0 = idf(docFreq=4, maxDocs=6) 
      1.0 = queryNorm 
    1.0 = (MATCH) fieldWeight(Info:开发 in 5), product of: 
      1.0 = tf(termFreq(Info:开发)=2) 
      1.0 = idf(docFreq=4, maxDocs=6) 
      1.0 = fieldNorm(field=Info, doc=5) 
  0.0 = (MATCH) weight(Info:工程^0.0 in 5), product of: 
    0.0 = queryWeight(Info:工程^0.0), product of: 
      0.0 = boost 
      1.0 = idf(docFreq=0, maxDocs=6) 
      1.0 = queryNorm 
    1.0 = (MATCH) fieldWeight(Info:工程 in 5), product of: 
      1.0 = tf(termFreq(Info:工程)=0) 
      1.0 = idf(docFreq=0, maxDocs=6) 
      1.0 = fieldNorm(field=Info, doc=5)


 

 

现在先看看实现 Similarity 类的方法 

 


1 package com.kernaling;  
 2     
 3 import org.apache.lucene.index.FieldInvertState;  
 4     
 5 public class BaicaiPositionSimilarity extends Similarity {  
 6     
 7       /** Implemented as 
 8        *  <code>state.getBoost()*lengthNorm(numTerms)</code>, where 
 9        *  <code>numTerms</code> is {@link FieldInvertState#getLength()} if {@link 
10        *  #setDiscountOverlaps} is false, else it's {@link 
11        *  FieldInvertState#getLength()} - {@link 
12        *  FieldInvertState#getNumOverlap()}. 
13        * 
14        *  <p><b>WARNING</b>: This API is new and experimental, and may suddenly 
15        *  change.</p> */  
16       @Override  
17       public float computeNorm(String field, FieldInvertState state) {  
18         final int numTerms;  
19         if (discountOverlaps)  
20           numTerms = state.getLength() - state.getNumOverlap();  
21         else  
22           numTerms = state.getLength();  
23         return (state.getBoost() * lengthNorm(field, numTerms));  
24       }  
25           
26       /** Implemented as <code>1/sqrt(numTerms)</code>. */  
27       @Override  
28       public float lengthNorm(String fieldName, int numTerms) {  
29 //        System.out.println("fieldName:" + fieldName + "\tnumTerms:" + numTerms);  
30 //      return (float)(1.0 / Math.sqrt(numTerms));  
31           return 1.0f;  
32       }  
33           
34       /** Implemented as <code>1/sqrt(sumOfSquaredWeights)</code>. */  
35       @Override  
36       public float queryNorm(float sumOfSquaredWeights) {  
37 //      return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));\  
38         return 1.0f;  
39       }  
40     
41       /** Implemented as <code>sqrt(freq)</code>. */  
42 //        term freq 表示 term 在一个document的出现次数,这里设置为1.0f表示不考滤这个因素影响  
43 //    @Override  
44 //    public float tf(float freq) {  
45         return 1.0f;  
46     
47       }  
48             
49       /** Implemented as <code>1 / (distance + 1)</code>. */  
50          //这里表示匹配的 term 与 term之间的距离因素,同样也不应该受影响  
51       @Override  
52       public float sloppyFreq(int distance) {  
53         return 1.0f;  
54       }  
55             
56       /** Implemented as <code>log(numDocs/(docFreq+1)) + 1</code>. */  
57           //这里表示匹配的docuemnt在全部document的影响因素,同理也不考滤  
58       @Override  
59       public float idf(int docFreq, int numDocs) {  
60         return 1.0f;  
61       }  
62             
63       /** Implemented as <code>overlap / maxOverlap</code>. */  
64           //这里表示每一个Document中所有匹配的关键字与当前关键字的匹配比例因素影响,同理也不考滤.  
65       @Override  
66       public float coord(int overlap, int maxOverlap) {  
67         return 1.0f;  
68       }  
69     
70       // Default false  
71       protected boolean discountOverlaps;  
72     
73       /** Determines whether overlap tokens (Tokens with 
74        *  0 position increment) are ignored when computing 
75        *  norm.  By default this is false, meaning overlap 
76        *  tokens are counted just like non-overlap tokens. 
77        * 
78        *  <p><b>WARNING</b>: This API is new and experimental, and may suddenly 
79        *  change.</p> 
80        * 
81        *  @see #computeNorm 
82 */  
83       public void setDiscountOverlaps(boolean v) {  
84         discountOverlaps = v;  
85       }  
86     
87       /**@see #setDiscountOverlaps */  
88       public boolean getDiscountOverlaps() {  
89         return discountOverlaps;  
90       }  
91 }


 

按上面的相似度因素影响,基本上都设置为不受其他影响了,现在只剩下了关键字匹配数据的影响了,也就是我们需求中需要的. 
然后做一个测试类: 

 

1 package com.kernaling;  
  2     
  3 import java.io.File;  
  4 import java.io.StringReader;  
  5     
  6 import org.apache.lucene.document.Document;  
  7 import org.apache.lucene.document.Field;  
  8 import org.apache.lucene.index.IndexWriter;  
  9 import org.apache.lucene.index.Term;  
 10 import org.apache.lucene.index.IndexWriter.MaxFieldLength;  
 11 import org.apache.lucene.search.BooleanClause;  
 12 import org.apache.lucene.search.BooleanQuery;  
 13 import org.apache.lucene.search.Explanation;  
 14 import org.apache.lucene.search.IndexSearcher;  
 15 import org.apache.lucene.search.ScoreDoc;  
 16 import org.apache.lucene.search.Sort;  
 17 import org.apache.lucene.search.SortField;  
 18 import org.apache.lucene.search.TermQuery;  
 19 import org.apache.lucene.search.TopDocs;  
 20 import org.apache.lucene.search.TopFieldCollector;  
 21 import org.apache.lucene.store.NIOFSDirectory;  
 22 import org.wltea.analyzer.IKSegmentation;  
 23 import org.wltea.analyzer.Lexeme;  
 24 import org.wltea.analyzer.lucene.IKAnalyzer;  
 25     
 26 public class LuceneSortSample {  
 27     public static void main(String[] args) {  
 28         try{  
 29     
 30             String path = "./Index";  
 31             IKAnalyzer analyzer = new IKAnalyzer();  
 32             MySimilarity similarity = new MySimilarity();  
 33                 
 34             boolean isIndex = false;    // true:要索引,false:表示要搜索   
 35                 
 36             if(isIndex){  
 37                 IndexWriter writer = new IndexWriter(new NIOFSDirectory(new File(path)),analyzer,MaxFieldLength.LIMITED);  
 38                 writer.setSimilarity(similarity);   //设置相关度  
 39                     
 40                 Document doc_0 = new Document();  
 41                 doc_0.add(new Field("Name","java 开发人员", Field.Store.YES, Field.Index.ANALYZED));  
 42                 doc_0.add(new Field("Info","招聘 网站开发人员,要求一年或以上工作经验", Field.Store.YES, Field.Index.ANALYZED));  
 43                 doc_0.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 44                 writer.addDocument(doc_0);  
 45                     
 46                     
 47                 Document doc_1 = new Document();  
 48                 doc_1.add(new Field("Name","高级开发人员(java 方向)", Field.Store.YES, Field.Index.ANALYZED));  
 49                 doc_1.add(new Field("Info","需要有四年或者以上的工作经验,有大型项目实践,java基本扎实", Field.Store.YES, Field.Index.ANALYZED));  
 50                 doc_1.add(new Field("Time","20100131", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 51                 writer.addDocument(doc_1);  
 52                     
 53                     
 54                 Document doc_2 = new Document();  
 55                 doc_2.add(new Field("Name","php 开发工程师", Field.Store.YES, Field.Index.ANALYZED));  
 56                 doc_2.add(new Field("Info","主要是维护公司的网站php开发,能独立完成网站的功能", Field.Store.YES, Field.Index.ANALYZED));  
 57                 doc_2.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 58                 writer.addDocument(doc_2);  
 59                     
 60                     
 61                 Document doc_3 = new Document();  
 62                 doc_3.add(new Field("Name","linux 管理员", Field.Store.YES, Field.Index.ANALYZED));  
 63                 doc_3.add(new Field("Info","管理及维护公司的linux服务器,职责包括完成mysql数据备份及日常管理,apache的性能调优等", Field.Store.YES, Field.Index.ANALYZED));  
 64                 doc_3.add(new Field("Time","20100201", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 65                 writer.addDocument(doc_3);  
 66                     
 67                     
 68                 Document doc_4 = new Document();  
 69                 doc_4.add(new Field("Name","lucene开发工作师", Field.Store.YES, Field.Index.ANALYZED));  
 70                 doc_4.add(new Field("Info","需要两年或者以上的从事lucene java 开发工作的经验,需要对算法,排序规则等有相关经验,java水平及基础要扎实", Field.Store.YES, Field.Index.ANALYZED));  
 71                 doc_4.add(new Field("Time","20100131", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 72                 writer.addDocument(doc_4);  
 73                     
 74                     
 75                 Document doc_5 = new Document();  
 76                 doc_5.add(new Field("Name","php 软件工程师", Field.Store.YES, Field.Index.ANALYZED));  
 77                 doc_5.add(new Field("Info","具有大量的php开发经验,如熟悉 java 开发,数据库管理则更佳", Field.Store.YES, Field.Index.ANALYZED));  
 78                 doc_5.add(new Field("Time","20100130", Field.Store.YES, Field.Index.NOT_ANALYZED));  
 79                 writer.addDocument(doc_5);  
 80                     
 81                 writer.close();  
 82                 System.out.println("数据索引完成");  
 83             }else{  
 84                 IndexSearcher search = new IndexSearcher(new NIOFSDirectory(new File(path)));  
 85                 search.setSimilarity(similarity);  
 86                 String keyWords = "java开发";  
 87                     
 88                     
 89                 String fiels[] = {"Name","Info"};  
 90                     
 91                 BooleanQuery bq = new BooleanQuery();  
 92                 for(int i=0;i<fiels.length;i++){  
 93                         
 94                     IKSegmentation se = new IKSegmentation(new StringReader(keyWords), true);  
 95                     Lexeme le = null;  
 96                         
 97                     while((le=se.next())!=null){  
 98                         String tKeyWord = le.getLexemeText();  
 99                         String tFeild = fiels[i];  
100                         TermQuery tq = new TermQuery(new Term(fiels[i], tKeyWord));  
101                             
102                         if(tFeild.equals("Name")){  //在Name这一个Field需要给大的比重  
103                             tq.setBoost(100.0f);  
104                         }else{  
105                             tq.setBoost(0.0f);      //其他的不需要考滤  
106                         }  
107                             
108                         bq.add(tq, BooleanClause.Occur.SHOULD); //关键字之间是 "或" 的关系  
109                     }  
110                 }  
111                 System.out.println("搜索条件Query:" + bq.toString());  
112                 System.out.println();  
113                 Sort sort = new Sort(new SortField[]{new SortField(null,SortField.SCORE,false),new SortField("Time", SortField.INT,true)});  
114                 //先按记录的得分排序,然后再按记录的发布时间倒序  
115                 TopFieldCollector collector = TopFieldCollector.create(sort , 10  ,  false , true ,  false ,  false);  
116                     
117                 long l = System.currentTimeMillis();  
118                 search.search(bq, collector);  
119                 TopDocs tDocs = collector.topDocs();  
120                     
121                 ScoreDoc sDocs[] = tDocs.scoreDocs;  
122     
123                 int len = sDocs.length;  
124                     
125                 for(int i=0;i<len;i++){  
126                     ScoreDoc tScore = sDocs[i];  
127 //                  tScore.score 从Lucene3.0开始已经不能通过这样来得到些文档的得分了  
128                     int docId = tScore.doc;  
129                     Explanation exp = search.explain(bq, docId);  
130                         
131                     Document tDoc = search.doc(docId);  
132                     String Name = tDoc.get("Name");  
133                     String Info = tDoc.get("Info");  
134                     String Time = tDoc.get("Time");  
135                         
136                     float score = exp.getValue();  
137 //                  System.out.println(exp.toString()); 如果需要打印文档得分的详细信息则可以通过此方法  
138                     System.out.println("DocId:"+docId+"\tScore:" + score + "\tName:" + Name + "\tTime:" + Time + "\tInfo:" + Info);  
139                 }  
140                 l = System.currentTimeMillis() - l;  
141                 System.out.println("搜索用时:" + l + "ms");  
142                 search.close();  
143             }  
144                 
145         }catch(Exception ex){  
146             ex.printStackTrace();  
147         }  
148     }  
149 }

建立完索引后然后就可以直接搜索了.效果图如下: 


Lucene关于实现Similarity自定义排序_搜索_03

 


可以看到,我们现在搜索关键字"开发工程", 然后就可以看到DocID:为 0,2为关键字全部命中的文档,然后这两个文档就按时间倒序排了. 

然后,DocId 1,4,5的话,就只匹配到部分的关键字,它肯定会比全部命中关键字的记录要排序要后,然后中命中部分关键字的记录又会按发布时间来倒序排了一次 

对了,我是用 Lucene3.0 作为开发包的.与Lucene2.XX的很多接口都改了,包括Similarity 的继承类的方法也不同, 所以大家要注思,不过经过测试,只要相同的实现那么效果也是一样的. 


注意:从上边的测试结果可以看到一个疑问,这些记录匹配的关键字 开发工程 中,无论是命中全部关键字还是一个,得到的score都是一样的,但是排序的时候却按我们之前设置的意义去排序,理论上来说,只匹配一半的关键字,score会是全部匹配的一半的,这里的话,不知道是否是一个bug.有待继续研究.同时职友集www.jobui.com与百才招聘 www.baicai.com 这两个网站的搜索功能还没有把这个想法用到上边去,现在只在本地的测试服务器中有效,因为这段时间有其他事情要做.请大家见谅.过年后左右,大家会有一个全新的搜索体验..谢谢. 

 

来自互联网

举报

相关推荐

0 条评论