0
点赞
收藏
分享

微信扫一扫

POJ 3522 Slim Span(MST)


Slim Span


http://poj.org/problem?id=3522


Time Limit:  5000MS


Memory Limit: 65536K


Description



Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.




POJ 3522 Slim Span(MST)_i++


Figure 5: A graph 

G and the weights of the edges


For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).



POJ 3522 Slim Span(MST)_i++_02


Figure 6: Examples of the spanning trees of  G


There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.


Input


The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.


n

m

 

a1

b1

w1

 


 

am

bm

wm


Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).


Output


For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.


Sample Input


4 51 2 31 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0


Sample Output


1200
-1
-1
1
0
1686
50



思路:枚举+并查集



完整代码:


/*79ms,208KB*/

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 101;
const int M = 5001;
const int INF = 0x7fffffff;

int fa[N], rank[N], n, m;

struct edge
{
	int a;
	int b;
	int w;
} edges[M];

bool cmp(const edge a, const edge b)
{
	return a.w < b.w;
}

int find_set(int n)
{
	if (fa[n] == n)
		return n;
	fa[n] = find_set(fa[n]);
	return fa[n];
}

bool union_set(int a, int b)
{
	int ra = find_set(a);
	int rb = find_set(b);
	if (ra != rb)
	{
		if (rank[ra] >= rank[rb])
		{
			fa[rb] = ra;
			rank[ra] += rank[rb];
		}
		else
		{
			fa[ra] = rb;
			rank[rb] += rank[ra];
		}
		return true;
	}
	return false;
}

int main()
{
	int i, j;
	int num;
	int min;
	int fedge, ledge;
	while (scanf("%d%d", &n, &m), n)
	{
		min = INF;
		bool flag = false;
		for (i = 1; i <= m; i++)
			scanf("%d%d%d", &edges[i].a, &edges[i].b, &edges[i].w);
		sort(edges + 1, edges + m + 1, cmp);
		if (n == 2 && m == 1)
		{
			printf("0\n");
			continue;
		}
		for (j = 1; j <= m; j++)
		{
			num = 0;
			for (i = 1; i <= n; i++)
			{
				fa[i] = i;
				rank[i] = 1;
			}
			for (i = j; i <= m; i++)
			{
				if (j + n - 2 > m)
				{
					flag = true;
					break;
				}
				if (union_set(edges[i].a, edges[i].b))
				{
				    //for (i = 1; i <= n; i++)
                    //{
                        //printf("%d %d\n",fa[i],rank[i]);
                    //}
					num++;
					if (num == 1)
						fedge = edges[i].w;
					else if (num == n - 1)
					{
						ledge = edges[i].w;
						if (ledge - fedge < min)
							min = ledge - fedge;
						break;
					}
				}
			}
			//printf("\n");
			if (flag)
				break;
		}
		printf("%d\n", min != INF ? min : -1);
	}
	return 0;
}



举报

相关推荐

0 条评论