0
点赞
收藏
分享

微信扫一扫

python数据处理分析库(二)

janedaring 2024-06-15 阅读 29

目录

一、Scikit-Learn

二、TensorFlow and Keras

三、BeautifulSoup and Requests


一、Scikit-Learn

  • 场景:机器学习建模和评估,分类、回归、聚类、模型评估
  • 简单示例:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

X = df[['feature1', 'feature2']]
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

二、TensorFlow and Keras

  • 场景:深度学习,图像识别、自然语言处理、时间序列预测
  • 简单示例:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential([
    Dense(128, activation='relu', input_shape=(X_train.shape[1],)),
    Dense(64, activation='relu'),
    Dense(1, activation='sigmoid')
])

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10)

三、BeautifulSoup and Requests

  • 场景:网页数据抓取,从网页获取数据进行分析
  • 简单示例:
import requests
from bs4 import BeautifulSoup

response = requests.get('https://example.com')
soup = BeautifulSoup(response.content, 'html.parser')
titles = soup.find_all('h1')
举报

相关推荐

0 条评论