非线性激活
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Of29HAKj-1643214265319)(H:\codes\pytorch\note\非线性激活.assets\image-20220119160559536.png)]](https://file.cfanz.cn/uploads/png/2022/01/26/16/b23VFVR832.png)
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uAVxXY5J-1643214265320)(H:\codes\pytorch\note\非线性激活.assets\image-20220119160623636.png)]](https://file.cfanz.cn/uploads/png/2022/01/26/16/11EVb2bC4M.png)
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1, -0.5],
[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)
dataset = torchvision.datasets.CIFAR10(root = "../dataset", train = False,transform = torchvision.transforms.ToTensor(), download = True)
dataloader = DataLoader(dataset, batch_size = 64)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.rulu1 = ReLU()
self.sigmoid1 = Sigmoid()
def forward(self, input):
output = self.sigmoid1(input)
return output
model = Model()
writer = SummaryWriter("logs_rule")
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images("input", imgs, global_step = step)
output = model(imgs)
writer.add_images("output", output, step)
step += 1
writer.close()