48. 旋转图像
难度中等991收藏分享切换为英文接收动态反馈
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在** 原地** 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
示例 3:
输入:matrix = [[1]]输出:[[1]]
示例 4:
输入:matrix = [[1,2],[3,4]]输出:[[3,1],[4,2]]
提示:
matrix.length == n
matrix[i].length == n
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
1.c++
/*
2021-09-03 22:57
*/
#include <iostream>
#include <vector>
using namespace std;
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int temp = 0;
const int n = matrix[0].size();
if (n < 2)
{
return;
}
int step = 0;
//矩阵转置
for (int i = 0;i < n;++i)
{
for (int j = step; j < n;++j)
{
temp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;
}
step += 1;
}
//对称
for (int i = 0; i < n;++i)
{
for (int j = 0;j < n/2;++j)
{
temp = matrix[i][j];
matrix[i][j] = matrix[i][(n-1-j)%n];
matrix[i][(n-1-j)%n] = temp;
}
}
}
};
void print_matrix(vector<vector<int>> &matrix)
{
int n = matrix[0].size();
for (int i = 0;i < n;++i)
{
for (int j = 0; j < n;++j)
{
cout<<matrix[i][j]<<" ";
}
cout<<endl;
}
}
int main()
{
vector<vector<int>> matrix = {{1,2,3},{4,5,6},{7,8,9}};
Solution s_obj;
s_obj.rotate(matrix);
print_matrix(matrix);
return 0;
}