0
点赞
收藏
分享

微信扫一扫

【优化算法】混合蛙跳优化算法(SFLA)【含Matlab源码 1472期】


一、获取代码方式

获取代码方式1:

通过订阅紫极神光博客​付费专栏​,凭支付凭证,​私信博主​,可获得此代码。

获取代码方式2:

完整代码已上传我的资源:​​【优化算法】混合蛙跳优化算法(SFLA)【含Matlab源码 1472期】​​

备注:

订阅紫极神光博客​付费专栏​,可免费获得​1​份代码(​有效期​为订阅日起,三天内有效);

二、部分源代码

%
%

sfla;
%


function pop = RunFLA(pop, params)

%% FLA Parameters
q = params.q; % Number of Parents
alpha = params.alpha; % Number of Offsprings
beta = params.beta; % Maximum Number of Iterations
sigma = params.sigma;
CostFunction = params.CostFunction;
VarMin = params.VarMin;
VarMax = params.VarMax;
VarSize = size(pop(1).Position);
BestSol = params.BestSol;

nPop = numel(pop); % Population Size
P = 2*(nPop+1-(1:nPop))/(nPop*(nPop+1)); % Selection Probabilities

% Calculate Population Range (Smallest Hypercube)
LowerBound = pop(1).Position;
UpperBound = pop(1).Position;
for i = 2:nPop
LowerBound = min(LowerBound, pop(i).Position);
UpperBound = max(UpperBound, pop(i).Position);
end

%% FLA Main Loop

for it = 1:beta

% Select Parents
L = RandSample(P,q);
B = pop(L);

% Generate Offsprings
for k=1:alpha

% Sort Population
[B, SortOrder] = SortPopulation(B);
L = L(SortOrder);

% Flags
ImprovementStep2 = false;
Censorship = false;

% Improvement Step 1
NewSol1 = B(end);
Step = sigma*rand(VarSize).*(B(1).Position-B(end).Position);
NewSol1.Position = B(end).Position + Step;
if IsInRange(NewSol1.Position, VarMin, VarMax)
NewSol1.Cost = CostFunction(NewSol1.Position);
if NewSol1.Cost<B(end).Cost
B(end) = NewSol1;
else
ImprovementStep2 = true;
end
else
ImprovementStep2 = true;
end

% Improvement Step 2
if ImprovementStep2
NewSol2 = B(end);
Step = sigma*rand(VarSize).*(BestSol.Position-B(end).Position);
NewSol2.Position = B(end).Position + Step;
if IsInRange(NewSol2.Position, VarMin, VarMax)
NewSol2.Cost = CostFunction(NewSol2.Position);
if NewSol2.Cost<B(end).Cost
B(end) = NewSol2;
else
Censorship = true;
end
else
Censorship = true;
end
end

% Censorship
if Censorship
B(end).Position = unifrnd(LowerBound, UpperBound);
B(end).Cost = CostFunction(B(end).Position);
end

end

% Return Back Subcomplex to Main Complex
pop(L) = B;

end

end

三、运行结果

【优化算法】混合蛙跳优化算法(SFLA)【含Matlab源码 1472期】_matlab

四、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.

[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

[3]施媛波.基于改进的群居蜘蛛优化云计算任务调度算法[J].电脑编程技巧与维护. 2021,(04)



举报

相关推荐

0 条评论