0
点赞
收藏
分享

微信扫一扫

python计算密集型效率对比


目录

  • ​​一: 需求:​​
  • ​​二:验证​​
  • ​​1.1: 顺序计算​​
  • ​​1.2: 协程计算​​
  • ​​1.3: 多线程计算​​
  • ​​三:结论​​

一: 需求:

在进行大变量赋值计算的时候, 我发现之前人的代码, 使用了多线程。但是根据我的经验, 计算密集型, 效率一般遵循这样的规律:多进程 > 顺序运行 > 协程 > 多线程。 因此我感觉之前的写法效率不会高。

二:验证

  • 计算1~1000数字相加, 并打印结果。

1.1: 顺序计算

# -*- coding: utf-8 -*-
import time
import gevent
from gevent import monkey
from concurrent.futures import ThreadPoolExecutor

monkey.patch_all()
def a_and_b(ab):
"""两数相加"""
a, b = ab
return a + b

def normal_test():
"""顺序计算"""
start_time = time.time()
results = [a_and_b((i, i - 1)) for i in range(1, 1000)]

for result in results:
print(result)
end_time = time.time()
print("normal cost time is {}".format(end_time - start_time))


if __name__ == '__main__':
normal_test()

  • normal cost time is 0.002415895462036133

1.2: 协程计算

# -*- coding: utf-8 -*-
import time
import gevent
from gevent import monkey
from concurrent.futures import ThreadPoolExecutor

monkey.patch_all()

def a_and_b(ab):
"""两数相加"""
a, b = ab
return a + b

def coroutine_test():
"""协程测试"""
start_time = time.time()
tasks = [gevent.spawn(a_and_b, (i, i - 1)) for i in range(1, 1000)]
gevent.joinall(tasks)

for task in tasks:
print(task.value)
end_time = time.time()
print("coroutine cost time is {}".format(end_time - start_time))

if __name__ == '__main__':
coroutine_test()

  • coroutine cost time is 0.010415792465209961

1.3: 多线程计算

# -*- coding: utf-8 -*-
import time
import gevent
from gevent import monkey
from concurrent.futures import ThreadPoolExecutor

monkey.patch_all()
def a_and_b(ab):
"""两数相加"""
a, b = ab
return a + b

def threading_test():
"""线程测试"""
futures = []
start_time = time.time()
with ThreadPoolExecutor(max_workers=10) as executor:
for i in range(1, 1000):
futures.append(executor.submit(a_and_b, (i, i - 1)))

for future in futures:
print(future.result())

end_time = time.time()
print("threading cost time is {}".format(end_time - start_time))

if __name__ == '__main__':
threading_test()

  • threading cost time is 0.07938933372497559

三:结论

  • 果然, 前人给埋的优化点被我发现了, 哈哈, 这个季度绩效有指望了。


举报

相关推荐

0 条评论