0
点赞
收藏
分享

微信扫一扫

win命令窗口的常用命令

googlefrank 2023-06-02 阅读 104

填最后一个坑,如何寻找误判的病例。

之前我们在介绍AUC的时候,提到了两个函数:predict和predict_proba,复习一下:

auc_test = roc_auc_score(y_test, y_testprba) 

roc_auc_score的参数呢,包括两个:y_test是实际值,y_testprba是预测的概率(注意,是概率,而不是分类,要和y_pred做区别),来看看代码:

y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 

来,一个是predict,一个是predict_proba,输出的如图所示。

一目了然了吧,就是根据0.5为阈值进行分类的。

所以呢,可以根据y_pred和y_true就可以判断是所谓的误诊(y_true是0,而y_pred是1)还是漏诊(y_true是1,而y_pred是0)。

具体操作在excel即可完成,最重的就是筛选出误诊和漏诊的病例:

我们还是用Xgboost做例子(测试集):

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('X disease code fs.csv')
X = dataset.iloc[:, 1:14].values
Y = dataset.iloc[:, 0].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
import xgboost as xgb
param_grid=[{
            'n_estimators':[35],
            'eta':[0.1],
            'max_depth':[1],
            'gamma':[0],
            'min_child_weight':[5],
            'max_delta_step':[1],
            'subsample':[0.8],
            'colsample_bytree':[0.8],
            'colsample_bylevel':[0.8],
            'reg_lambda':[9],
            'reg_alpha':[5],
            },
           ]
boost = xgb.XGBClassifier()
classifier = xgb.XGBClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(boost, param_grid, n_jobs = -1, verbose = 2, cv=10)      
grid_search.fit(X_train, y_train)    
classifier = grid_search.best_estimator_  
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
y_testprba = classifier.predict_proba(X_test)[:,1] 
y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.predict_proba(X_train)[:,1]

由于我们演示的是测试集,所以关注y_pred和y_test:

 接着,我们需要在运行一次代码:

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.30, random_state = 666)

我们需要获得y_text对应的X_test,而上述那一串代码的X_test的数据已经被归一化了,没法使用,我们需要的是原始数据:

然后,我们把y_pred和y_test以及X_test复制到新的excel(注意:不要搞乱顺序,目前顺序是一一对应的)

 不放心的话,可以调出原始数据,稍微对应一下是否做到一一对应了,比如:

对应得上,不放心就再找几个做校对。

接着,新开一列,用真实值减去预测值,那么误诊(真实是0,而预测是1)就是-1,漏诊(真实是1,而预测是0)就是1。使用筛选功能,分别把它们提取出来,做你想做的分析,水几个图还是OK的。

 

 终于,花了32期,把机器学习分类讲完了,洋洋洒洒4-5万字,有种写博士毕业论文的感觉了,希望对大家有用,也欢迎进行技术探讨。特别是Xgboost、LightGBM还有Catboost,以及各种Stacking模型,掌握的还是不够深入。

 

 

 

举报

相关推荐

0 条评论