Description
Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.
The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.
Example 1:
Input:
1
/ \
3 2
/ \ \
5 3 9
Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).
Example 2:
Input:
1
/
3
/ \
5 3
Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).
Example 3:
Input:
1
/ \
3 2
/
5
Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).
Example 4:
Input:
1
/ \
3 2
/ \
5 9
/ \
6 7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).
Note: Answer will in the range of 32-bit signed integer.
分析
题目的意思是:求一个二叉树的最大宽度。
- 对于一棵完美二叉树,如果根结点是深度1,那么每一层的结点数就是2n-1,那么每个结点的位置就是[1, 2n-1]中的一个,假设某个结点的位置是i,那么其左右子结点的位置可以直接算出来,为2i和2i+1。
- 我们从根结点进入,深度为0,位置为1,进入递归函数。
- 首先判断,如果当前结点为空,那么直接返回,然后判断如果当前深度大于start数组的长度,说明当前到了新的一层的最左结点,我们将当前位置存入start数组中。然后我们用idx - start[h] + 1来更新结果res。这里idx是当前结点的位置,start[h]是当前层最左结点的位置。然后对左右子结点分别调用递归函数,注意左右子结点的位置可以直接计算出来。
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int widthOfBinaryTree(TreeNode* root) {
int res=0;
vector<int> start;
solve(root,0,1,start,res);
return res;
}
void solve(TreeNode* root,int h,int idx,vector<int>& start,int& res){
if(!root){
return ;
}
if(h>=start.size()) start.push_back(idx);
res=max(res,idx-start[h]+1);
solve(root->left,h+1,idx*2,start,res);
solve(root->right,h+1,idx*2+1,start,res);
}
};
参考文献
[LeetCode] Maximum Width of Binary Tree 二叉树的最大宽度