0
点赞
收藏
分享

微信扫一扫

CSDN机器学习笔记九 支持向量机

一、概念

支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

在机器学习中,支持向量机(SVN,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。

1. 线性分类

线性分类器(也可以叫做感知机,这里的机表示的是一种算法)

2. 分类标准

这里考虑的是一个两类的分类问题,数据点用x来表示,这是一个n维向量,w^T中的T代表转置,而类另用y来表示,可以取1或者 -1,分别代表两个不同的类。一个线性分类器的学习目标就是要在n维的数据空间中找到一个分类超平面,其方向可以表示为:

wTx+b=0

二、问题起源

要做一个分类任务,有两类点,圈与叉,要找一条分隔线把两类分开来。

如何选择一条线呢?
CSDN机器学习笔记九 支持向量机_支持向量机

假设有一些雷,要找出一条线,离这些雷越远越好。
CSDN机器学习笔记九 支持向量机_机器学习_02
这时我们看C离雷最远。
CSDN机器学习笔记九 支持向量机_支持向量机_03
找阴影平面最大的线。

CSDN机器学习笔记九 支持向量机_机器学习_04

CSDN机器学习笔记九 支持向量机_数据_05

CSDN机器学习笔记九 支持向量机_数据_06

CSDN机器学习笔记九 支持向量机_机器学习_07

CSDN机器学习笔记九 支持向量机_数据_08

CSDN机器学习笔记九 支持向量机_支持向量机_09

CSDN机器学习笔记九 支持向量机_支持向量机_10

CSDN机器学习笔记九 支持向量机_支持向量机_11

CSDN机器学习笔记九 支持向量机_机器学习_12

CSDN机器学习笔记九 支持向量机_机器学习_13

CSDN机器学习笔记九 支持向量机_机器学习_14

现在对要求稍放宽一点,有些异常点(软间隔:soft margin)
CSDN机器学习笔记九 支持向量机_数据_15

CSDN机器学习笔记九 支持向量机_数据_16

CSDN机器学习笔记九 支持向量机_机器学习_17

第2课
低维 可分,转高维可分的。
CSDN机器学习笔记九 支持向量机_支持向量机_18

CSDN机器学习笔记九 支持向量机_支持向量机_19

CSDN机器学习笔记九 支持向量机_支持向量机_20

CSDN机器学习笔记九 支持向量机_支持向量机_21

示例:使用sklearn库做支持向量机
CSDN机器学习笔记九 支持向量机_数据_22
CSDN机器学习笔记九 支持向量机_数据_23


举报

相关推荐

0 条评论