0
点赞
收藏
分享

微信扫一扫

人人都能学的数据分析体系课(16周完整版+源码+PDF课件)

点击下载——人人都能学的数据分析体系课(16周完整版+源码+PDF课件) 提取码: 4vxi

人人都能学的数据分析(16周完整版+源码+PDF课件),其中包含Excel从入门到表格分析、从0开始学SQL、数据可视化利器 Tableau、Python实现数据分析、Python实现网络爬虫、 构建用户画像、预售销售额、调整运营策略、使用AB实验迭代功能、撰写数据报告、面试指导等内容!


首先,常见的数据分析方法有9种:对比分析,多维度拆解分析,漏斗观察,分布分析,用户留存分析,用户画像,归因查找,路径挖掘,行为序列分析。


人人都能学的数据分析,数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。  

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。


数据清洗

在工作中,90%以上的情况,你拿到的数据都需要先做清洗工作,排除异常值、空白值、无效值、重复值等等。这项工作经常会占到整个数据分析过程将近一半的时间。

如果在上一步中,你的数据是通过手工复制/下载获取的,那么通常会比较干净,不需要做太多清洗工作。但如果数据是通过爬虫等方式得来,那么你需要进行清洗,提取核心内容,去掉网页代码、标点符号等无用内容。

无论你采用哪一种方式获取数据,请记住,数据清洗永远是你必须要做的一项工作。


数据整理

清洗过后,需要进行数据整理,即将数据整理为能够进行下一步分析的格式,对于初学者,用Excel来完成这一工作就OK。

如果你的数据已经是表格形式,那么计算一些二级指标就好,比如用今年销量和去年销量算出同比增长率。鉴于你是第一次做数据报告,建议你不要计算太多复杂的二级指标,基本的同比、环比、占比分布这些就OK。

如果你收集的是一些非数字的数据,比如对商家的点评,那么你进行下一步统计之前,需要通过“关键词-标签”方式,将句子转化为标签,再对标签进行统计。

举报

相关推荐

0 条评论