0
点赞
收藏
分享

微信扫一扫

HDU2845_Beans【不连续的最大子段和】【元素压缩】

mm_tang 2022-07-27 阅读 42


Beans





Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


Total Submission(s): 2964    Accepted Submission(s): 1427


Problem Description


Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.



Now, how much qualities can you eat and then get ?


 


Input


There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.


 


Output


For each case, you just output the MAX qualities you can eat and then get.


 


Sample Input


4 6


11 0 7 5 13 9


78 4 81 6 22 4


1 40 9 34 16 10


11 22 0 33 39 6


 


Sample Output


242


 


Source


2009 Multi-University Training Contest 4 - Host by HDU


题目大意:给你一个矩阵,不能选择每行中相邻的数字,也不能选当前行的上一

行和下一行,问使所选数和最大的值是多少?

思路:用元素压缩的思想。先把2维矩阵降为1维数组。对每行求出不相邻的数字

最大和是多少,把几个数字和缩成一个数。再对所有行求出不相邻的行数字最大

和是多少。

对于每行求出不相邻的数字最大和的状态转移方程为

dp[i+1] = max{吃i达到的最大值,不吃i达到的最大值+第i+1个数}


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int MAXN = 200000;
int dpa[MAXN+20],dpb[MAXN+20],row[MAXN+20];
int main()
{
int M,N,num;
while(~scanf("%d%d",&M,&N))
{
memset(row,0,sizeof(row));
for(int i = 0; i < M; i++)
{
dpa[0] = dpb[0] = 0;
for(int j = 0; j < N; j++)
{
scanf("%d",&num);
dpa[j+1] = max(dpa[j],dpb[j]);// dp[j+1] 是到j为止,不吃j所能吃到的最大值
dpb[j+1] = dpa[j] + num;//吃j所能吃到的最大值
}
row[i] = max(dpa[N],dpb[N]);
}
dpa[0] = dpb[0] = 0;
for(int i = 0; i < M; i++)
{
dpa[i+1] = max(dpa[i],dpb[i]);
dpb[i+1] = dpa[i] + row[i];
}
int ans = max(dpa[M],dpb[M]);
printf("%d\n",ans);
}
return 0;
}




举报

相关推荐

0 条评论