0
点赞
收藏
分享

微信扫一扫

集训队专题(5.2)1005 The Stable Marriage Problem

做个橙梦 2022-08-30 阅读 230


The Stable Marriage Problem


Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 608    Accepted Submission(s): 305


Problem Description


The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other set’s members. The input for our problem consists of:

a set M of n males;
a set F of n females;

for each male and female we have a list of all the members of the opposite gender in order of preference (from the most preferable to the least).
A marriage is a one-to-one mapping between males and females. A marriage is called stable, if there is no pair (m, f) such that f ∈ F prefers m ∈ M to her current partner and m prefers f over his current partner. The stable marriage A is called male-optimal if there is no other stable marriage B, where any male matches a female he prefers more than the one assigned in A.

Given preferable lists of males and females, you must find the male-optimal stable marriage.


 



Input


The first line gives you the number of tests. The first line of each test case contains integer n (0 < n < 27). Next line describes n male and n female names. Male name is a lowercase letter, female name is an upper-case letter. Then go n lines, that describe preferable lists for males. Next n lines describe preferable lists for females.


 



Output


For each test case find and print the pairs of the stable marriage, which is male-optimal. The pairs in each test case must be printed in lexicographical order of their male names as shown in sample output. Output an empty line between test cases.


 



Sample Input


2 3 a b c A B C a:BAC b:BAC c:ACB A:acb B:bac C:cab 3 a b c A B C a:ABC b:ABC c:BCA A:bac B:acb C:abc


 



Sample Output


a A b B c C a B b A c C


 



Source


​​Southeastern Europe 2007​​


 


此题也是一个裸的稳定婚姻问题,也没什么好说的,直接看代码就好了


#include <cstdio>
#include <cstring>
#include <queue>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=50;
int g[maxn][maxn],b[maxn][maxn],visit[maxn][maxn];
int bf[maxn],gf[maxn];
char ch[maxn],str[maxn];
map<char,int> G,M;
map<int,char> GG,MM;
queue<int> q;
int T,n;
void init()
{
G.clear(),M.clear(),GG.clear(),MM.clear();
memset(visit,0,sizeof(visit));
memset(bf,0,sizeof(bf));
while(!q.empty()) q.pop();
}
void find(int x)
{
for(int i=n; i>=1; i--)
{
if(visit[x][i]) continue;
visit[x][i] = 1;
int y=b[x][i];
if(!bf[y])
{
bf[y] = x;
gf[x] = y;
return;
}
else
{
if(g[y][x] > g[y][ bf[y]] )
{
q.push(bf[y]);
bf[y] = x;
gf[x] = y;
return;
}
}
}
}
void Gale_Shapley()
{
for(int i=1; i<=n; i++) q.push(i);
while(!q.empty())
{
int x=q.front();
q.pop();
find(x);
}
sort(ch+1,ch+n+1);
for(int i=1; i<=n; i++)
{
printf("%c %c\n",ch[i],MM[gf[ G[ ch[i] ] ]]);
}
}
int main()
{
cin >> T;
while(T--)
{
cin >> n;
init();
for(int i=1; i<=n; i++)
{
cin >> ch[i];
G[ch[i]] = i;
GG[i] = ch[i];
}
for(int i=1; i<=n; i++)
{
cin >> ch[n+i];
M[ch[n+i]] = i;
MM[i] = ch[i+n];
}
for(int i=1; i<=n; i++)
{
scanf("%s",str+1);
int x=G[str[1]];
for(int j=3; j<=n+2; j++)
{
int y=M[str[j]];
b[x][n-j+3] = y;
}
}
for(int i=1; i<=n; i++)
{
scanf("%s",str+1);
int x=M[str[1]];
for(int j=3; j<=n+2; j++)
{
int y=G[str[j]];
g[x][y] = n-j+3;
}
}
Gale_Shapley();
if(T) puts("");
}
}



举报

相关推荐

0 条评论