0
点赞
收藏
分享

微信扫一扫

Linux 权限

最近在研究加密算法,发现异或操作在加密算法中用途特别广,也特别好用。下面以Java语言为例,简单记录一下异或操作,以及在算法中的使用,包括常用的OTP算法。

一,异或操作特征

1, 相同出0,不同出1

换种说法是:无进位进行相加

2, N ^ 0 = N (任何数异或上0都是自己)

可以用无进位相加来进行理解

3,N ^ N = 0 (因为二进制是一样的,相同出0)

4,异或符合 交换律 和 结合律

5,自反性

二,算法应用

1,冒泡算法

冒泡排序中使用异或的方式交换数据的方式

public static void swap(int[] arr, int i, int j) {
    // 使用异或的方式进行交换
    arr[i] = arr[i] ^ arr[j];
    arr[j] = arr[i] ^ arr[j];
    arr[i] = arr[i] ^ arr[j];
}

解析:

2,力扣算法实例1

有一堆数字,里面有一个数字的个数是奇数,其他数字的个数都是偶数,打印出这个奇数

public static void printOddNum1(int[] arr) {
    // 让这个数和所有的数进行异或
    int eor = 0;
    for (int num : arr) {
        eor ^= num;
    }
    // 最后出来就是那个奇数个的数
    System.out.println(eor);
}

解析:

3,力扣算法实例2

有一堆数字,里面有两个数字的个数是奇数,其他数字的个数都是偶数,打印出这两个奇数

public static void printOddNum2(int[] arr) {
    // 让这个数和所有的数进行异或
    // 假如 第一个奇数为 a 第二个奇数为 b
    int eor = 0;
    for (int num : arr) {
        eor ^= num;
    }
    // 找到最右边的1的位置 异或不同才出1
    int rightNum = eor & (~eor + 1);
    // 将这个位置为1的数进行异或
    int eorOpen = 0;
    for (int num : arr) {
        // == 0 说明了在rightNum这个位置为 0
        if ((num & rightNum) == 0) {
            eorOpen ^= num;
        }
    }
    // eorOpen 不是 a 就是 b
    // 所以另一个数就是   eorOpen ^ eor
    System.out.println(eorOpen + " " + (eorOpen ^ eor));
}

解析:

三,OTP算法

如果要说古典密码中,哪个最安全,那么一次性密码本一定会有一席之地。从理论层面上来说,它是牢不可破的(无法暴力破解),但在实际操作中却存在一些问题。

一次性密码本英文名为One-time Pad或者OTP,是在1882年被弗兰克·米勒(Frank Miller)发现并沿用至今,它是以随机的密钥(key)组成明文,且只使用一次,需要通信双方事先去沟通一个一次性的,与被加密信息长度相等或者更长的密钥。

加密过程:

就是将明文(待传信息的编码)和一串随机生成的二进制码进行XOR(异或)运算。

  1. 将明文编码,即转换为二进制。
  2. 随机生成和明文二进制位数相同的密钥。
  3. 将明文和密钥的二进制进行XOR操作,生成密文。

解密过程:

依靠的是XOR(异或)操作的自反性,通过明文和密钥异或得到的密文,再通过将密文和密钥再次异或操作得到明文。

虽然一次性密码本非常简单,但是一次性密码本是绝对无法破解的,这个破解并不是指现有的计算能力不够,而是指即使拥有无穷大的计算能力也无法破解。

如果我们拿到了密文并进行暴力破解,也就是将所有顺序的密钥尝试一遍,假设密文长度是32bit,那么我们将得到2的32次方数量的明文。显然我们无法判断哪一个是正确的明文,因为在所有的组合排列中可能生成多个有意义的文字。所以这种解密是无意义的,就像是我知道了原文的长度,然后自己构造这个长度的原文。因此一次性密码本是无法破译的。

当然OTP密码也有缺点,比如密钥太长,无法重复使用等问题。

码字不易,记得点赞关注哟!

举报

相关推荐

0 条评论