说明:
TCP 是一个面向连接的,安全的,流式传输协议,这个协议是一个传输层协议。
- 面向连接:是一个双向连接,通过三次握手完成,断开连接需要通过四次挥手完成。
- 安全:tcp 通信过程中,会对发送的每一数据包都会进行校验,如果发现数据丢失,会自动重传。
- 流式传输:发送端和接收端处理数据的速度,数据的量都可以不一致。
交互流程如下:
服务器端通信流程:
创建用于监听的套接字,这个套接字是一个文件描述符
int lfd = socket();
将得到的监听的文件描述符和本地的 IP 端口进行绑定
bind();
设置监听 (成功之后开始监听,监听的是客户端的连接)
listen();
等待并接受客户端的连接请求,建立新的连接,会得到一个新的文件描述符 (通信的),没有新连接请求就阻塞
int cfd = accept();
通信,读写操作默认都是阻塞的
// 接收数据
read(); / recv();
// 发送数据
write(); / send();
断开连接,关闭套接字
close();
客户端的通信流程:
创建一个通信的套接字
int cfd = socket();
连接服务器,需要知道服务器绑定的 IP 和端口
connect();
通信
// 接收数据
read(); / recv();
// 发送数据
write(); / send();
断开连接,关闭文件描述符 (套接字)
close();
实例代码:
服务端:
// server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
int main()
{
// 1. 创建监听的套接字
int lfd = socket(AF_INET, SOCK_STREAM, 0);
if(lfd == -1)
{
perror("socket");
exit(0);
}
// 2. 将socket()返回值和本地的IP端口绑定到一起
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(9090); // 端口
// INADDR_ANY代表本机的所有IP, 假设有三个网卡就有三个IP地址
// 这个宏可以代表任意一个IP地址
// 这个宏一般用于本地的绑定操作
addr.sin_addr.s_addr = INADDR_ANY; // 这个宏的值为0 == 0.0.0.0
// inet_pton(AF_INET, "192.168.237.131", &addr.sin_addr.s_addr);
int ret = bind(lfd, (struct sockaddr*)&addr, sizeof(addr));
if(ret == -1)
{
perror("bind");
exit(0);
}
// 3. 设置监听
ret = listen(lfd, 128);
if(ret == -1)
{
perror("listen");
exit(0);
}
// 4. 阻塞等待并接受客户端连接
struct sockaddr_in cliaddr;
int clilen = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &clilen);
if(cfd == -1)
{
perror("accept");
exit(0);
}
// 打印客户端的地址信息
char ip[24] = {0};
printf("客户端的IP地址: %s, 端口: %d\n",
inet_ntop(AF_INET, &cliaddr.sin_addr.s_addr, ip, sizeof(ip)),
ntohs(cliaddr.sin_port));
// 5. 和客户端通信
while(1)
{
// 接收数据
char buf[1024];
memset(buf, 0, sizeof(buf));
int len = read(cfd, buf, sizeof(buf));
if(len > 0)
{
printf("客户端say: %s\n", buf);
write(cfd, buf, len);
}
else if(len == 0)
{
printf("客户端断开了连接...\n");
break;
}
else
{
perror("read");
break;
}
}
close(cfd);
close(lfd);
return 0;
}
客户端:
// client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
int main()
{
// 1. 创建通信的套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if(fd == -1)
{
perror("socket");
exit(0);
}
// 2. 连接服务器
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(9090); // 大端端口
inet_pton(AF_INET, "192.168.23.27", &addr.sin_addr.s_addr);
int ret = connect(fd, (struct sockaddr*)&addr, sizeof(addr));
if(ret == -1)
{
perror("connect");
exit(0);
}
// 3. 和服务器端通信
int number = 0;
while(1)
{
// 发送数据
char buf[1024];
sprintf(buf, "你好, 服务器...%d\n", number++);
write(fd, buf, strlen(buf)+1);
// 接收数据
memset(buf, 0, sizeof(buf));
int len = read(fd, buf, sizeof(buf));
if(len > 0)
{
printf("服务器say: %s\n", buf);
}
else if(len == 0)
{
printf("服务器断开了连接...\n");
break;
}
else
{
perror("read");
break;
}
sleep(1); // 每隔1s发送一条数据
}
close(fd);
return 0;
}
多线程与多进程网络通信比较
服务器端:
多线程 / 多进程并发
- 主线程 / 父进程:调用 accept() 监测客户端连接请求
- 如果没有新的客户端的连接请求,当前线程 / 进程会阻塞
- 如果有新的客户端连接请求解除阻塞,建立连接
子线程 / 子进程:和建立连接的客户端通信
- 调用 read() / recv() 接收客户端发送的通信数据,如果没有通信数据,当前线程 / 进程会阻塞,数据到达之后阻塞自动解除。
- 调用 write() / send() 给客户端发送数据,如果写缓冲区已满,当前线程 / 进程会阻塞,否则将待发送数据写入写缓冲区中。
与多进程和多线程技术相比,I/O 多路复用技术的最大优势是系统开销小,系统不必创建进程 / 线程,也不必维护这些进程 / 线程,从而大大减小了系统的开销。
IO 多路复用:
说明:
IO 多路转接也称为 IO 多路复用,它是一种网络通信的手段(机制),通过这种方式可以同时监测多个文件描述符并且这个过程是阻塞的,一旦检测到有文件描述符就绪( 可以读数据或者可以写数据)程序的阻塞就会被解除,之后就可以基于这些(一个或多个)就绪的文件描述符进行通信了。通过这种方式在单线程 / 进程的场景下也可以在服务器端实现并发。常见的 IO 多路转接方式有:select、poll、epoll。
select 模型:
使用 select 这种 IO 多路转接方式需要调用一个同名函数 select,这个函数是跨平台的,Linux、Mac、Windows 都是支持的。程序猿通过调用这个函数可以委托内核帮助我们检测若干个文件描述符的状态,其实就是检测这些文件描述符对应的读写缓冲区的状态:
- 读缓冲区:检测里边有没有数据,如果有数据该缓冲区对应的文件描述符就绪
- 写缓冲区:检测写缓冲区是否可以写 (有没有容量),如果有容量可以写,缓冲区对应的文件描述符就绪
- 读写异常:检测读写缓冲区是否有异常,如果有该缓冲区对应的文件描述符就绪
函数说明:
#include <sys/select.h>
struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
};
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval * timeout);
**函数参数:**
- nfds:委托内核检测的这三个集合中最大的文件描述符 + 1
内核需要线性遍历这些集合中的文件描述符,这个值是循环结束的条件
在 Window 中这个参数是无效的,指定为 - 1 即可
- readfds:文件描述符的集合,内核只检测这个集合中文件描述符对应的读缓冲区
传入传出参数,读集合一般情况下都是需要检测的,这样才知道通过哪个文件描述符接收数据
- writefds:文件描述符的集合,内核只检测这个集合中文件描述符对应的写缓冲区
传入传出参数,如果不需要使用这个参数可以指定为 NULL
- exceptfds:文件描述符的集合,内核检测集合中文件描述符是否有异常状态
传入传出参数,如果不需要使用这个参数可以指定为 NULL
- timeout:超时时长,用来强制解除 select () 函数的阻塞的
NULL:函数检测不到就绪的文件描述符会一直阻塞。
等待固定时长(秒):函数检测不到就绪的文件描述符,在指定时长之后强制解除阻塞,函数返回 0
不等待:函数不会阻塞,直接将该参数对应的结构体初始化为 0 即可。
**函数返回值:**
- 大于 0:成功,返回集合中已就绪的文件描述符的总个数
- 等于 - 1:函数调用失败
- 等于 0:超时,没有检测到就绪的文件描述符
// 将文件描述符fd从set集合中删除 == 将fd对应的标志位设置为0
void FD_CLR(int fd, fd_set *set);
// 判断文件描述符fd是否在set集合中 == 读一下fd对应的标志位到底是0还是1
int FD_ISSET(int fd, fd_set *set);
// 将文件描述符fd添加到set集合中 == 将fd对应的标志位设置为1
void FD_SET(int fd, fd_set *set);
// 将set集合中, 所有文件文件描述符对应的标志位设置为0, 集合中没有添加任何文件描述符
void FD_ZERO(fd_set *set);
实例代码:
服务器端代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
int main()
{
// 1. 创建监听的fd
int lfd = socket(AF_INET, SOCK_STREAM, 0);
// 2. 绑定
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(7070);
addr.sin_addr.s_addr = INADDR_ANY;
bind(lfd, (struct sockaddr*)&addr, sizeof(addr));
// 3. 设置监听
listen(lfd, 128);
// 将监听的fd的状态检测委托给内核检测
int maxfd = lfd;
// 初始化检测的读集合
fd_set rdset;
fd_set rdtemp;
// 清零
FD_ZERO(&rdset);
// 将监听的lfd设置到检测的读集合中
FD_SET(lfd, &rdset);
// 通过select委托内核检测读集合中的文件描述符状态, 检测read缓冲区有没有数据
// 如果有数据, select解除阻塞返回
// 应该让内核持续检测
while(1)
{
// 默认阻塞
// rdset 中是委托内核检测的所有的文件描述符
rdtemp = rdset;
int num = select(maxfd+1, &rdtemp, NULL, NULL, NULL);
// rdset中的数据被内核改写了, 只保留了发生变化的文件描述的标志位上的1, 没变化的改为0
// 只要rdset中的fd对应的标志位为1 -> 缓冲区有数据了
// 判断
// 有没有新连接
if(FD_ISSET(lfd, &rdtemp))
{
// 接受连接请求, 这个调用不阻塞
struct sockaddr_in cliaddr;
int cliLen = sizeof(cliaddr);
int cfd = accept(lfd, (struct sockaddr*)&cliaddr, &cliLen);
// 得到了有效的文件描述符
// 通信的文件描述符添加到读集合
// 在下一轮select检测的时候, 就能得到缓冲区的状态
FD_SET(cfd, &rdset);
// 重置最大的文件描述符
maxfd = cfd > maxfd ? cfd : maxfd;
}
// 没有新连接, 通信
for(int i=0; i<maxfd+1; ++i)
{
// 判断从监听的文件描述符之后到maxfd这个范围内的文件描述符是否读缓冲区有数据
if(i != lfd && FD_ISSET(i, &rdtemp))
{
// 接收数据
char buf[10] = {0};
// 一次只能接收10个字节, 客户端一次发送100个字节
// 一次是接收不完的, 文件描述符对应的读缓冲区中还有数据
// 下一轮select检测的时候, 内核还会标记这个文件描述符缓冲区有数据 -> 再读一次
// 循环会一直持续, 知道缓冲区数据被读完位置
int len = read(i, buf, sizeof(buf));
if(len == 0)
{
printf("客户端关闭了连接...\n");
// 将检测的文件描述符从读集合中删除
FD_CLR(i, &rdset);
close(i);
}
else if(len > 0)
{
// 收到了数据
// 发送数据
write(i, buf, strlen(buf)+1);
}
else
{
// 异常
perror("read");
}
}
}
}
return 0;
}
rdset 用于保存要检测的原始数据,这个变量不能作为参数传递给 select 函数,因为在函数内部这个变量中的值会被内核修改,函数调用完毕返回之后,里边就不是原始数据了,大部分情况下是值为 1 的标志位变少了,不可能每一轮检测,所有的文件描述符都是就行的状态。因此需要通过 rdtemp 变量将原始数据传递给内核,select () 调用完毕之后再将内核数据传出,这两个变量的功能是不一样的。
客户端代码:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
int main()
{
// 1. 创建用于通信的套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if(fd == -1)
{
perror("socket");
exit(0);
}
// 2. 连接服务器
struct sockaddr_in addr;
addr.sin_family = AF_INET; // ipv4
addr.sin_port = htons(7070); // 服务器监听的端口, 字节序应该是网络字节序
inet_pton(AF_INET, "127.0.0.1", &addr.sin_addr.s_addr);
int ret = connect(fd, (struct sockaddr*)&addr, sizeof(addr));
if(ret == -1)
{
perror("connect");
exit(0);
}
// 通信
while(1)
{
// 读数据
char recvBuf[1024];
// 写数据
// sprintf(recvBuf, "data: %d\n", i++);
fgets(recvBuf, sizeof(recvBuf), stdin);
write(fd, recvBuf, strlen(recvBuf)+1);
// 如果客户端没有发送数据, 默认阻塞
read(fd, recvBuf, sizeof(recvBuf));
printf("recv buf: %s\n", recvBuf);
sleep(1);
}
// 释放资源
close(fd);
return 0;
}
poll 模型:
说明:
poll 的机制与 select 类似,与 select 在本质上没有多大差别,使用方法也类似,下面的是对于二者的对比:
- 内核对应文件描述符的检测也是以线性的方式进行轮询,根据描述符的状态进行处理
- poll 和 select检测的文件描述符集合会在检测过程中频繁的进行用户区和内核区的拷贝,它的开销随着文件描述符数量的增加而线性增大,从而效率也会越来越低。
- select检测的文件描述符个数上限是1024,poll没有最大文件描述符数量的限制
- select可以跨平台使用,poll只能在Linux平台使用
poll 函数的函数:
#include <poll.h>
// 每个委托poll检测的fd都对应这样一个结构体
struct pollfd {
int fd; /* 委托内核检测的文件描述符 */
short events; /* 委托内核检测文件描述符的什么事件 */
short revents; /* 文件描述符实际发生的事件 -> 传出 */
};
struct pollfd myfd[100];
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
函数参数:
- fds: 这是一个 struct pollfd 类型的数组,里边存储了待检测的文件描述符的信息,这个数组中有三个成员:
- fd:委托内核检测的文件描述符
- events:委托内核检测的 fd 事件(输入、输出、错误),每一个事件有多个取值
- revents:这是一个传出参数,数据由内核写入,存储内核检测之后的结果
- nfds: 这是第一个参数数组中最后一个有效元素的下标 + 1(也可以指定参数 1 数组的元素总个数)
- timeout: 指定 poll 函数的阻塞时长
-1:一直阻塞,直到检测的集合中有就绪的文件描述符(有事件产生)解除阻塞
- 0:不阻塞,不管检测集合中有没有已就绪的文件描述符,函数马上返回 大于 0:阻塞指定的毫秒(ms)数之后,解除阻塞
- 函数返回值:
失败: 返回 - 1
成功:返回一个大于 0 的整数,表示检测的集合中已就绪的文件描述符的总个数
poll 代码:
服务端代码:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/select.h>
#include <poll.h>
int main()
{
// 1.创建套接字
int lfd = socket(AF_INET, SOCK_STREAM, 0);
if(lfd == -1)
{
perror("socket");
exit(0);
}
// 2. 绑定 ip, port
struct sockaddr_in addr;
addr.sin_port = htons(7777);
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
int ret = bind(lfd, (struct sockaddr*)&addr, sizeof(addr));
if(ret == -1)
{
perror("bind");
exit(0);
}
// 3. 监听
ret = listen(lfd, 100);
if(ret == -1)
{
perror("listen");
exit(0);
}
// 4. 等待连接 -> 循环
// 检测 -> 读缓冲区, 委托内核去处理
// 数据初始化, 创建自定义的文件描述符集
struct pollfd fds[1024];
// 初始化
for(int i=0; i<1024; ++i)
{
fds[i].fd = -1;
fds[i].events = POLLIN;
}
fds[0].fd = lfd;
int maxfd = 0;
while(1)
{
// 委托内核检测
ret = poll(fds, maxfd+1, -1);
if(ret == -1)
{
perror("select");
exit(0);
}
// 检测的度缓冲区有变化
// 有新连接
if(fds[0].revents & POLLIN)
{
// 接收连接请求
struct sockaddr_in sockcli;
int len = sizeof(sockcli);
// 这个accept是不会阻塞的
int connfd = accept(lfd, (struct sockaddr*)&sockcli, &len);
// 委托内核检测connfd的读缓冲区
int i;
for(i=0; i<1024; ++i)
{
if(fds[i].fd == -1)
{
fds[i].fd = connfd;
break;
}
}
maxfd = i > maxfd ? i : maxfd;
}
// 通信, 有客户端发送数据过来
for(int i=1; i<=maxfd; ++i)
{
// 如果在集合中, 说明读缓冲区有数据
if(fds[i].revents & POLLIN)
{
char buf[128];
int ret = read(fds[i].fd, buf, sizeof(buf));
if(ret == -1)
{
perror("read");
exit(0);
}
else if(ret == 0)
{
printf("对方已经关闭了连接...\n");
close(fds[i].fd);
fds[i].fd = -1;
}
else
{
printf("客户端say: %s\n", buf);
write(fds[i].fd, buf, strlen(buf)+1);
}
}
}
}
close(lfd);
return 0;
}
从上面的测试代码可以得知,使用 poll 和 select 进行 IO 多路转接的处理思路是完全相同的,但是使用 poll 编写的代码看起来会更直观一些,select 使用的位图的方式来标记要委托内核检测的文件描述符(每个比特位对应一个唯一的文件描述符),并且对这个 fd_set 类型的位图变量进行读写还需要借助一系列的宏函数,操作比较麻烦。而 poll 直接将要检测的文件描述符的相关信息封装到了一个结构体 struct pollfd 中,我们可以直接读写这个结构体变量
客户端:
客户端无要求,可以与select 同一个。
epoll:
说明:
epoll 全称 eventpoll,是 linux 内核实现 IO 多路转接 / 复用(IO multiplexing)的一个实现。IO 多路转接的意思是在一个操作里同时监听多个输入输出源,在其中一个或多个输入输出源可用的时候返回,然后对其的进行读写操作。epoll 是 select 和 poll 的升级版,相较于这两个前辈,epoll 改进了工作方式,因此它更加高效。
- 对于待检测集合select和poll是基于线性方式处理的,epoll是基于红黑树来管理待检测集合的。
- select和poll每次都会线性扫描整个待检测集合,集合越大速度越慢,epoll使用的是回调机制,效率高,处理效率也不会随着检测集合的变大而下降
- select和poll工作过程中存在内核/用户空间数据的频繁拷贝问题,在epoll中内核和用户区使用的是共享内存(基于mmap内存映射区实现),省去了不必要的内存拷贝。
- 程序猿需要对select和poll返回的集合进行判断才能知道哪些文件描述符是就绪的,通过epoll可以直接得到已就绪的文件描述符集合,无需再次检测
- 使用 epoll 没有最大文件描述符的限制,仅受系统中进程能打开的最大文件数目限制
当多路复用的文件数量庞大、IO 流量频繁的时候,一般不太适合使用 select () 和 poll (),这种情况下 select () 和 poll () 表现较差,推荐使用 epoll ()。
函数说明:
#include <sys/epoll.h>
// 创建epoll实例,通过一棵红黑树管理待检测集合
int epoll_create(int size);
// 管理红黑树上的文件描述符(添加、修改、删除)
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
// 检测epoll树中是否有就绪的文件描述符
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
epoll 的函数使用:
创建监听的套接字
int lfd = socket(AF_INET, SOCK_STREAM, 0);
设置端口复用(可选)
int opt = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
使用本地的IP与端口和监听的套接字进行绑定
int ret = bind(lfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
给监听的套接字设置监听
listen(lfd, 128);
创建epoll实例对象
int epfd = epoll_create(100);
将用于监听的套接字添加到epoll实例中
struct epoll_event ev;
ev.events = EPOLLIN; // 检测lfd读读缓冲区是否有数据
ev.data.fd = lfd;
int ret = epoll_ctl(epfd, EPOLL_CTL_ADD, lfd, &ev);
检测添加到epoll实例中的文件描述符是否已就绪,并将这些已就绪的文件描述符进行处理
int num = epoll_wait(epfd, evs, size, -1);
如果是监听的文件描述符,和新客户端建立连接,将得到的文件描述符添加到epoll实例中
int cfd = accept(curfd, NULL, NULL);
ev.events = EPOLLIN;
ev.data.fd = cfd;
// 新得到的文件描述符添加到epoll模型中, 下一轮循环的时候就可以被检测了
epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &ev);
如果是通信的文件描述符,和对应的客户端通信,如果连接已断开,将该文件描述符从epoll实例中删除
int len = recv(curfd, buf, sizeof(buf), 0);
if(len == 0)
{
// 将这个文件描述符从epoll模型中删除
epoll_ctl(epfd, EPOLL_CTL_DEL, curfd, NULL);
close(curfd);
}
else if(len > 0)
{
send(curfd, buf, len, 0);
}
epoll 实例代码:
#include <stdio.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/epoll.h>
// server
int main(int argc, const char* argv[])
{
// 创建监听的套接字
int lfd = socket(AF_INET, SOCK_STREAM, 0);
if(lfd == -1)
{
perror("socket error");
exit(1);
}
// 绑定
struct sockaddr_in serv_addr;
memset(&serv_addr, 0, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(7070);
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY); // 本地多有的IP
// 设置端口复用
int opt = 1;
setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
// 绑定端口
int ret = bind(lfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
if(ret == -1)
{
perror("bind error");
exit(1);
}
// 监听
ret = listen(lfd, 64);
if(ret == -1)
{
perror("listen error");
exit(1);
}
// 现在只有监听的文件描述符
// 所有的文件描述符对应读写缓冲区状态都是委托内核进行检测的epoll
// 创建一个epoll模型
int epfd = epoll_create(100);
if(epfd == -1)
{
perror("epoll_create");
exit(0);
}
// 往epoll实例中添加需要检测的节点, 现在只有监听的文件描述符
struct epoll_event ev;
ev.events = EPOLLIN; // 检测lfd读读缓冲区是否有数据
ev.data.fd = lfd;
int ret = epoll_ctl(epfd, EPOLL_CTL_ADD, lfd, &ev);
if(ret == -1)
{
perror("epoll_ctl");
exit(0);
}
struct epoll_event evs[1024];
int size = sizeof(evs) / sizeof(struct epoll_event);
// 持续检测
while(1)
{
// 调用一次, 检测一次
int num = epoll_wait(epfd, evs, size, -1);
for(int i=0; i<num; ++i)
{
// 取出当前的文件描述符
int curfd = evs[i].data.fd;
// 判断这个文件描述符是不是用于监听的
if(curfd == lfd)
{
// 建立新的连接
int cfd = accept(curfd, NULL, NULL);
// 新得到的文件描述符添加到epoll模型中, 下一轮循环的时候就可以被检测了
ev.events = EPOLLIN; // 读缓冲区是否有数据
ev.data.fd = cfd;
ret = epoll_ctl(epfd, EPOLL_CTL_ADD, cfd, &ev);
if(ret == -1)
{
perror("epoll_ctl-accept");
exit(0);
}
}
else
{
// 处理通信的文件描述符
// 接收数据
char buf[1024];
memset(buf, 0, sizeof(buf));
int len = recv(curfd, buf, sizeof(buf), 0);
if(len == 0)
{
printf("客户端已经断开了连接\n");
// 将这个文件描述符从epoll模型中删除
epoll_ctl(epfd, EPOLL_CTL_DEL, curfd, NULL);
close(curfd);
}
else if(len > 0)
{
printf("客户端say: %s\n", buf);
send(curfd, buf, len, 0);
}
else
{
perror("recv");
exit(0);
}
}
}
}
return 0;
}
当在服务器端循环调用 epoll_wait() 的时候,就会得到一个就绪列表,并通过该函数的第二个参数传出:
struct epoll_event evs[1024];
int num = epoll_wait(epfd, evs, size, -1);
每当 epoll_wait() 函数返回一次,在 evs 中最多可以存储 size 个已就绪的文件描述符信息,但是在这个数组中实际存储的有效元素个数为 num 个,如果在这个 epoll 实例的红黑树中已就绪的文件描述符很多,并且 evs 数组无法将这些信息全部传出,那么这些信息会在下一次 epoll_wait() 函数返回的时候被传出。
通过 evs 数组被传递出的每一个有效元素里边都包含了已就绪的文件描述符的相关信息,这些信息并不是凭空得来的,这取决于我们在往 epoll 实例中添加节点的时候,往节点中初始化了哪些数据:
struct epoll_event ev;
// 节点初始化
ev.events = EPOLLIN;
ev.data.fd = lfd; // 使用了联合体中 fd 成员
// 添加待检测节点到epoll实例中
int ret = epoll_ctl(epfd, EPOLL_CTL_ADD, lfd, &ev);
在添加节点的时候,需要对这个 struct epoll_event 类型的节点进行初始化,当这个节点对应的文件描述符变为已就绪状态,这些被传入的初始化信息就会被原样传出,这个对应关系必须要搞清楚。