0
点赞
收藏
分享

微信扫一扫

关于RocketMQ的基础API操作——这一篇就够了


关于RocketMQ的基础操作

  • ​​一、基础API操作​​
  • ​​1、 普通消息​​
  • ​​1.1、消息生产端​​
  • ​​1.2、消息消费端​​
  • ​​2、顺序消息​​
  • ​​2.1、消息生产端​​
  • ​​2.2、消息消费端​​
  • ​​3、广播消息​​
  • ​​3.1、消息生产端​​
  • ​​3.2、消息消费端​​
  • ​​4、延迟消息​​
  • ​​4.1、消息生产端​​
  • ​​4.2、消息消费端​​
  • ​​4.3、实现原理​​
  • ​​5、批量消息​​
  • ​​5.1、消息生产端——普通版​​
  • ​​5.2、 消息生产端——分割过大消息版​​
  • ​​5.3、消息消费端​​
  • ​​6、过滤消息​​
  • ​​6.1、消息生产端——Tag过滤​​
  • ​​6.2、消息消费端——Tag过滤​​
  • ​​6.3、消息生产端——SQL过滤​​
  • ​​6.4、消息消费端——SQL过滤​​
  • ​​7、事务 消息​​
  • ​​7.1、消息生产端​​
  • ​​7.2、消息消费端​​
  • ​​7.3、事务消息限制​​
  • ​​7.4、事务消息实现原理​​
  • ​​二、概念补充​​
  • ​​1、消息发送重试机制​​
  • ​​1.1、同步发送失败策略​​
  • ​​1.2、异步发送失败策略​​
  • ​​1.3、消息刷盘失败策略​​
  • ​​2、消息消费重试机制​​
  • ​​2.1、顺序消息的消费重试​​
  • ​​2.2、无序消息的消费重试​​
  • ​​2.3、消费重试次数与间隔​​
  • ​​2.4、重试队列​​
  • ​​2.5、消费重试配置方式​​
  • ​​2.6、 消费不重试配置方式​​
  • ​​3、死信队列​​
  • ​​3.1、什么是死信队列​​
  • ​​3.2、死信队列的特征​​
  • ​​3.3、死信消息的处理​​
  • ​​三、整合SpringBoot使用​​
  • ​​1、引入依赖​​
  • ​​2、主启动类+配置​​
  • ​​2、消息生产端​​
  • ​​3、消息消费端​​




写在前面:本文中出现的示例及代码,均来源​​RocketMQ的官网​​​以及​​B站尚硅谷的RocketMQ视频教程​​​。结合整理出了一个相对简单的笔记。
本文仅为自己学习RocketMQ的一个知识笔记,也希望这个笔记能帮助到你。

一、基础API操作

下面的案例需要引入对应的maven依赖

<dependencies>
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-client</artifactId>
<version>4.8.0</version>
</dependency>
</dependencies>

1、 普通消息

普通消息的消息生产者分别通过三种方式发送消息:同步发送、异步发送以及单向发送。以DefaultMQProducer为起点。

1.1、消息生产端

1)Producer端发送同步消息——send

这种可靠性同步地发送方式使用的比较广泛,比如:重要的消息通知,短信通知。



关于RocketMQ的基础API操作——这一篇就够了_发送消息

public class SyncProducer {
public static void main(String[] args) throws Exception {
// 实例化消息生产者Producer
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
// 设置NameServer的地址
producer.setNamesrvAddr("127.0.0.1:9876");
// 启动Producer实例
producer.start();
for (int i = 0; i < 100; i++) {
// 创建消息,并指定Topic,Tag和消息体
Message msg = new Message("TopicTest" /* Topic */,
"TagA" /* Tag */,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);
// 发送消息到一个Broker
SendResult sendResult = producer.send(msg);
// 通过sendResult返回消息是否成功送达
System.out.printf("%s%n", sendResult);
}
// 如果不再发送消息,关闭Producer实例。
producer.shutdown();
}
}



2)发送异步消息——send+SendCallback

异步消息通常用在对响应时间敏感的业务场景,即发送端不能容忍长时间地等待Broker的响应。

引入了一个countDownLatch来保证所有消息回调方法都执行完了再关闭Producer。 所以从这里可以看出,RocketMQ的Producer也是一个服务端,在往Broker发送消息的时候也要作为服务端提供服务。



关于RocketMQ的基础API操作——这一篇就够了_java_02

public class AsyncProducer {
public static void main(String[] args) throws Exception {
// 实例化消息生产者Producer
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
// 设置NameServer的地址
producer.setNamesrvAddr("127.0.0.1:9876");
// 启动Producer实例
producer.start();
// 设置异步重试次数为0次,表示失败后不重试。默认2次
producer.setRetryTimesWhenSendAsyncFailed(0);

int messageCount = 100;
// 根据消息数量实例化倒计时计算器
final CountDownLatch2 countDownLatch = new CountDownLatch2(messageCount);
for (int i = 0; i < messageCount; i++) {
final int index = i;
// 创建消息,并指定Topic,Tag和消息体
Message msg = new Message("TopicTest",
"TagA",
"OrderID188",
"Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));
// SendCallback接收异步返回结果的回调
producer.send(msg, new SendCallback() {
@Override
public void onSuccess(SendResult sendResult) {
countDownLatch.countDown();
System.out.printf("%-10d OK %s %n", index,
sendResult.getMsgId());
}
@Override
public void onException(Throwable e) {
countDownLatch.countDown();
System.out.printf("%-10d Exception %s %n", index, e);
e.printStackTrace();
}
});
}
// 等待5s
countDownLatch.await(5, TimeUnit.SECONDS);
// 如果不再发送消息,关闭Producer实例。
producer.shutdown();
}
}



3)单向发送消息的样例——sendOneway

单向发送消息是指,Producer仅负责发送消息,不等待、不处理MQ的ACK。该发送方式时MQ也不返 回ACK。该方式的消息发送效率最高,但消息可靠性较差。

这种方式主要用在不特别关心发送结果的场景,例如日志发送



关于RocketMQ的基础API操作——这一篇就够了_发送消息_03

public class OnewayProducer {
public static void main(String[] args) throws Exception{
// 实例化消息生产者Producer
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
// 设置NameServer的地址
producer.setNamesrvAddr("127.0.0.1:9876");
// 启动Producer实例
producer.start();
for (int i = 0; i < 100; i++) {
// 创建消息,并指定Topic,Tag和消息体
Message msg = new Message("TopicTest" /* Topic */,
"TagA" /* Tag */,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
);
// 发送单向消息,没有任何返回结果
producer.sendOneway(msg);

}
// 如果不再发送消息,关闭Producer实例。
producer.shutdown();
}
}


1.2、消息消费端

消费者消费消息有两种模式,一种是消费者主动去Broker上拉取消息的拉模式,另一种是消费者等待Broker把消息推送过来的推模式。

通常情况下,用**推模式(DefaultMQPushConsumer)**比较简单,实际上RocketMQ的推模式也是由拉模式(DefaultMQPullConsumerImpl)封装出来的

4.7.1版本中DefaultMQPullConsumerImpl这个消费者类已标记为过期,但是还是可以使用的。替换的类是DefaultLitePullConsumerImpl

1)push模式——DefaultMQPushConsumer

public class Consumer {

public static void main(String[] args) throws InterruptedException, MQClientException {

// 实例化消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name");

// 设置NameServer的地址
consumer.setNamesrvAddr("127.0.0.1:9876");

// 订阅一个或者多个Topic,以及Tag来过滤需要消费的消息
consumer.subscribe("TopicTest", "*");
// 注册回调实现类来处理从broker拉取回来的消息
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
// 标记该消息已经被成功消费
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
// 启动消费者实例
consumer.start();
System.out.printf("Consumer Started.%n");
}
}



2)pull模式——DefaultMQPullConsumer

public class PullConsumer {
private static final Map<MessageQueue, Long> OFFSE_TABLE = new HashMap<MessageQueue, Long>();

public static void main(String[] args) throws MQClientException {
DefaultMQPullConsumer consumer = new DefaultMQPullConsumer("please_rename_unique_group_name");
consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.start();

Set<MessageQueue> mqs = consumer.fetchSubscribeMessageQueues("TopicTest");
for (MessageQueue mq : mqs) {
System.out.printf("Consume from the queue: %s%n", mq);
SINGLE_MQ:
while (true) {
try {
PullResult pullResult =
consumer.pullBlockIfNotFound(mq, null, getMessageQueueOffset(mq), 32);
System.out.printf("%s%n", pullResult);
putMessageQueueOffset(mq, pullResult.getNextBeginOffset());
switch (pullResult.getPullStatus()) {
case FOUND:
break;
case NO_MATCHED_MSG:
break;
case NO_NEW_MSG:
break SINGLE_MQ;
case OFFSET_ILLEGAL:
break;
default:
break;
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
consumer.shutdown();
}

private static long getMessageQueueOffset(MessageQueue mq) {
Long offset = OFFSE_TABLE.get(mq);
if (offset != null)
return offset;
return 0;
}

private static void putMessageQueueOffset(MessageQueue mq, long offset) {
OFFSE_TABLE.put(mq, offset);
}
}


2、顺序消息

消息有序指的是可以按照消息的发送顺序来消费(FIFO)。RocketMQ可以严格的保证消息有序,可以分为分区有序或者全局有序。

顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参与,则为分区有序,即相对每个queue,消息都是有序的。

下面用订单进行分区有序的示例。一个订单的顺序流程是:创建、付款、推送、完成。订单号相同的消息会被先后发送到同一个队列中,消费时,同一个OrderId获取到的肯定是同一个队列。

2.1、消息生产端

public class Producer {

public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

String[] tags = new String[]{"TagA", "TagC", "TagD"};

// 订单列表
List<OrderStep> orderList = new Producer().buildOrders();

Date date = new Date();
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String dateStr = sdf.format(date);
for (int i = 0; i < 10; i++) {
// 加个时间前缀
String body = dateStr + " Hello RocketMQ " + orderList.get(i);
Message msg = new Message("TopicTest", tags[i % tags.length], "KEY" + i, body.getBytes());

SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Long id = (Long) arg; //根据订单id选择发送queue
long index = id % mqs.size();
return mqs.get((int) index);
}
}, orderList.get(i).getOrderId());//订单id

System.out.println(String.format("SendResult status:%s, queueId:%d, body:%s",
sendResult.getSendStatus(),
sendResult.getMessageQueue().getQueueId(),
body));
}

producer.shutdown();
}

/**
* 订单的步骤
*/
private static class OrderStep {
private long orderId;
private String desc;

public long getOrderId() {
return orderId;
}

public void setOrderId(long orderId) {
this.orderId = orderId;
}

public String getDesc() {
return desc;
}

public void setDesc(String desc) {
this.desc = desc;
}

@Override
public String toString() {
return "OrderStep{" +
"orderId=" + orderId +
", desc='" + desc + '\'' +
'}';
}
}

/**
* 生成模拟订单数据
*/
private List<OrderStep> buildOrders() {
List<OrderStep> orderList = new ArrayList<OrderStep>();

OrderStep orderDemo = new OrderStep();
orderDemo.setOrderId(15103111039L);
orderDemo.setDesc("创建");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111065L);
orderDemo.setDesc("创建");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111039L);
orderDemo.setDesc("付款");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103117235L);
orderDemo.setDesc("创建");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111065L);
orderDemo.setDesc("付款");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103117235L);
orderDemo.setDesc("付款");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111065L);
orderDemo.setDesc("完成");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111039L);
orderDemo.setDesc("推送");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103117235L);
orderDemo.setDesc("完成");
orderList.add(orderDemo);

orderDemo = new OrderStep();
orderDemo.setOrderId(15103111039L);
orderDemo.setDesc("完成");
orderList.add(orderDemo);

return orderList;
}
}



2.2、消息消费端

/**
* 带事务方式(应用可控制Offset什么时候提交)
*/
public class ConsumerInOrder {

public static void main(String[] args) throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_3");
consumer.setNamesrvAddr("127.0.0.1:9876");
/**
* 设置Consumer第一次启动是从队列头部开始消费还是队列尾部开始消费<br>
* 如果非第一次启动,那么按照上次消费的位置继续消费
*/
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);

consumer.subscribe("TopicTest", "TagA || TagC || TagD");

consumer.registerMessageListener(new MessageListenerOrderly() {

Random random = new Random();

@Override
public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
context.setAutoCommit(true);
for (MessageExt msg : msgs) {
// 可以看到每个queue有唯一的consume线程来消费, 订单对每个queue(分区)有序
System.out.println("consumeThread=" + Thread.currentThread().getName() + "queueId=" + msg.getQueueId() + ", content:" + new String(msg.getBody()));
}

try {
//模拟业务逻辑处理中...
TimeUnit.SECONDS.sleep(random.nextInt(10));
} catch (Exception e) {
e.printStackTrace();
}
return ConsumeOrderlyStatus.SUCCESS;
}
});

consumer.start();

System.out.println("Consumer Started.");
}
}



验证时,可以启动多个Consumer实例,观察下每一个订单的消息分配以及每个订单下多个步骤的消费顺序。不管订单在多个Consumer实例之前是如何分配的,每个订单下的多条消息顺序都是固定的。

实际上,RocketMQ也只保证了每个OrderID的所有消息有序(发到了同一个queue),而并不能保证所有消息都有序。所以这就涉及到了RocketMQ消息有序的原理。要保证最终消费到的消息是有序的,需要从Producer、Broker、Consumer三个步骤都保证消息有序才行。

RocketMQ保证的是消息的局部有序,而不是全局有序


首先在发送者端:在默认情况下,消息发送者会采取Round Robin轮询方式把消息发送到不同的MessageQueue(分区队列),而消费者消费的时候也从多个MessageQueue上拉取消息,这种情况下消息是不能保证顺序的。而只有当一组有序的消息发送到同一个MessageQueue上时,才能利用MessageQueue先进先出的特性保证这一组消息有序。

而Broker中一个队列内的消息是可以保证有序的。

然后在消费者端:消费者会从多个消息队列上去拿消息。这时虽然每个消息队列上的消息是有序的,但是多个队列之间的消息仍然是乱序的。消费者端要保证消息有序,就需要按队列一个一个来取消息,即取完一个队列的消息后,再去取下一个队列的消息。而给consumer注入的MessageListenerOrderly对象,在RocketMQ内部就会通过锁队列的方式保证消息是一个一个队列来取的。MessageListenerConcurrently这个消息监听器则不会锁队列,每次都是从多个Message中取一批数据(默认不超过32条)。因此也无法保证消息有序。


3、广播消息

广播消息并没有特定的消息消费者样例,这是因为这涉及到消费者的集群消费模式。在集群状态(MessageModel.CLUSTERING)下,每一条消息只会被同一个消费者组中的一个实例消费到(这跟kafka和rabbitMQ的集群模式是一样的)。而广播模式则是把消息发给了所有订阅了对应主题的消费者,而不管消费者是不是同一个消费者组。

3.1、消息生产端

消息生产端按正常发送逻辑发送消息即可,可参考普通消息中消息生产端代码逻辑。



3.2、消息消费端

广播与集群主要的区别就是设置的MessageModel属性不同:

1)MessageModel.CLUSTERING:集群模式

2)MessageModel.BROADCASTING:广播模式

public class PushConsumer {

public static void main(String[] args) throws InterruptedException, MQClientException {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_1");
consumer.setNamesrvAddr("127.0.0.1:9876");

consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
// 消费方式设置为广播消息
consumer.setMessageModel(MessageModel.BROADCASTING);

// 需要与消息生产端的topic相同
consumer.subscribe("TopicTest", "*");

consumer.registerMessageListener(new MessageListenerConcurrently() {

@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});

consumer.start();
System.out.printf("Broadcast Consumer Started.%n");
}
}


4、延迟消息

延时消息有众多的业务场景,如电商里,提交了一个订单就可以发送一个延时消息,1h后去检查这个订单的状态,如果还是未付款就取消订单释放库存。

延迟消息实现的效果就是在调用producer.send方法后,消息并不会立即发送出去,而是会等一段时间再发送出去。这是RocketMQ特有的一个功能。

那会延迟多久呢?延迟时间的设置就是在Message消息对象上设置一个延迟级别message.setDelayTimeLevel(3);

开源版本的RocketMQ中,对延迟消息并不支持任意时间的延迟设定(商业版本中支持),而是只支持18个固定的延迟级别,1到18分别对应messageDelayLevel=1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h。这从rocketmq-console控制台就能看出来。而这18个延迟级别也支持自行定义,不过一般情况下最好不要自定义修改。



4.1、消息生产端

delayTimeLevel:1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h

public class ScheduledMessageProducer {
public static void main(String[] args) throws Exception {
// 实例化一个生产者来产生延时消息
DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

int totalMessagesToSend = 100;
for (int i = 0; i < totalMessagesToSend; i++) {
Message message = new Message("TestTopic", ("Hello scheduled message " + i).getBytes());
// 设置延时等级3,这个消息将在10s之后发送(现在只支持固定的几个时间,详看delayTimeLevel)
message.setDelayTimeLevel(3);
// 发送消息
producer.send(message);
}
// 关闭生产者
producer.shutdown();
}
}



4.2、消息消费端

public class ScheduledMessageConsumer {
public static void main(String[] args) throws Exception {
// 实例化消费者
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("ExampleConsumer");
consumer.setNamesrvAddr("127.0.0.1:9876");
// 订阅Topics
consumer.subscribe("TestTopic", "*");
// 注册消息监听者
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> messages, ConsumeConcurrentlyContext context) {
for (MessageExt message : messages) {
// Print approximate delay time period
System.out.println("Receive message[msgId=" + message.getMsgId() + "] " + (System.currentTimeMillis() - message.getBornTimestamp()) + "ms later");
}
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
// 启动消费者
consumer.start();
}
}


4.3、实现原理



关于RocketMQ的基础API操作——这一篇就够了_分布式_04

1)修改消息

Producer将消息发送到Broker后,Broker会首先将消息写入到commitlog文件,然后需要将其分发到相应的consumequeue。不过,在分发之前,系统会先判断消息中是否带有延时等级。若没有,则直接正常分发;若有则需要经历一个复杂的过程:

  • 修改消息的Topic为SCHEDULE_TOPIC_XXXX
  • 根据延时等级,在consumequeue目录中SCHEDULE_TOPIC_XXXX主题下创建出相应的queueId 目录与consumequeue文件(如果没有这些目录与文件的话)。
  • 修改消息索引单元内容。索引单元中的Message Tag HashCode部分原本存放的是消息的Tag的 Hash值。现修改为消息的投递时间。投递时间是指该消息被重新修改为原Topic后再次被写入到 commitlog中的时间。投递时间 = 消息存储时间 + 延时等级时间。消息存储时间指的是消息 被发送到Broker时的时间戳。
  • 将消息索引写入到SCHEDULE_TOPIC_XXXX主题下相应的consumequeue中


关于RocketMQ的基础API操作——这一篇就够了_发送消息_05

延迟等级delayLevel与queueId的对应关系为queueId = delayLevel -1 需要注意,在创建queueId目录时,并不是一次性地将所有延迟等级对应的目录全部创建完毕, 而是用到哪个延迟等级创建哪个目录



2)投递延时消息

Broker内部有⼀个延迟消息服务类ScheuleMessageService,其会消费SCHEDULE_TOPIC_XXXX中的消 息,即按照每条消息的投递时间,将延时消息投递到⽬标Topic中。不过,在投递之前会从commitlog 中将原来写入的消息再次读出,并将其原来的延时等级设置为0,即原消息变为了一条不延迟的普通消 息。然后再次将消息投递到目标Topic中。

ScheuleMessageService在Broker启动时,会创建并启动一个定时器TImer,用于执行相应的定时任务。系统会根据延时等级的个数,定义相应数量的TimerTask,每个TimerTask负责一个延迟等级消息的消费与投递。每个TimerTask都会检测相应Queue队列的第一条消息是否到期。若第 一条消息未到期,则后面的所有消息更不会到期(消息是按照投递时间排序的);若第一条消息到期了,则将该消息投递到目标Topic,即消费该消息。



3)将消息重新写入commitlog

延迟消息服务类ScheuleMessageService将延迟消息再次发送给了commitlog,并再次形成新的消息索引条目,分发到相应Queue。这其实就是一次普通消息发送。只不过这次的消息Producer是延迟消息服务类 ScheuleMessageService


5、批量消息

批量消息是指将多条消息合并成一个批量消息,一次发送出去。这样的好处是可以减少网络IO,提升吞吐量。相关的限制有:

  • 这些批量消息应该有相同的topic;
  • 相同的waitStoreMsgOK;
  • 而且不能是延时消息;
  • 这一批消息的总大小不应超过4MB。

如果批量消息大于1MB就不要用一个批次发送,而要拆分成多个批次消息发送。也就是说,一个批次消息的大小不要超过1MB。实际使用时,这个1MB的限制可以稍微扩大点,实际最大的限制是4194304字节,大概4MB。但是使用批量消息时,这个消息长度确实是必须考虑的一个问题。

5.1、消息生产端——普通版

public class SimpleBatchProducer {

public static void main(String[] args) throws Exception {
DefaultMQProducer producer = new DefaultMQProducer("BatchProducerGroupName");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

//If you just send messages of no more than 1MiB at a time, it is easy to use batch
//Messages of the same batch should have: same topic, same waitStoreMsgOK and no schedule support
String topic = "BatchTest";
List<Message> messages = new ArrayList<>();
messages.add(new Message(topic, "Tag", "OrderID001", "Hello world 0".getBytes()));
messages.add(new Message(topic, "Tag", "OrderID002", "Hello world 1".getBytes()));
messages.add(new Message(topic, "Tag", "OrderID003", "Hello world 2".getBytes()));

producer.send(messages);
producer.shutdown();
}
}



5.2、 消息生产端——分割过大消息版

复杂度只有当你发送大批量时才会增长,你可能不确定它是否超过了大小限制(4MB)。这时候你最好把你的消息列表分割一下

public class SplitBatchProducer {

public static void main(String[] args) throws Exception {

DefaultMQProducer producer = new DefaultMQProducer("BatchProducerGroupName");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

//large batch
String topic = "BatchTest";
List<Message> messages = new ArrayList<>(100 * 1000);
for (int i = 0; i < 100 * 1000; i++) {
messages.add(new Message(topic, "Tag", "OrderID" + i, ("Hello world " + i).getBytes()));
}
// 不直接发送,而是先让下面的消息过滤器进行一次消息过滤
// producer.send(messages);

//split the large batch into small ones:
MessageListSplitter splitter = new MessageListSplitter(messages);
while (splitter.hasNext()) {
List<Message> listItem = splitter.next();
producer.send(listItem);
}
producer.shutdown();
}
}

分割消息逻辑代码

// 消息列表分割器:其只会处理每条消息的大小不超4M的情况。
// 若存在某条消息,其本身大小大于4M,这个分割器无法处理,
// 其直接将这条消息构成一个子列表返回。并没有再进行分割
public class MessageListSplitter implements Iterator<List<Message>> {
// 指定极限值为4M
private final int SIZE_LIMIT = 4 *1024 * 1024;
// 存放所有要发送的消息
private final List<Message> messages;
// 要进行批量发送消息的小集合起始索引
private int currIndex;
public MessageListSplitter(List<Message> messages) {
this.messages = messages;
}

@Override
public boolean hasNext() {
// 判断当前开始遍历的消息索引要小于消息总数
return currIndex < messages.size();
}

@Override
public List<Message> next() {
int nextIndex = currIndex;
// 记录当前要发送的这一小批次消息列表的大小
int totalSize = 0;
for (; nextIndex < messages.size(); nextIndex++) {
// 获取当前遍历的消息
Message message = messages.get(nextIndex);

// 统计当前遍历的message的大小
int tmpSize = message.getTopic().length() + message.getBody().length;
Map<String, String> properties = message.getProperties();
for (Map.Entry<String, String> entry : properties.entrySet()) {
tmpSize += entry.getKey().length() + entry.getValue().length();
}
tmpSize = tmpSize + 20;

// 判断当前消息本身是否大于4M
if (tmpSize > SIZE_LIMIT) {
if (nextIndex - currIndex == 0) {
nextIndex++;
}
break;
}

if (tmpSize + totalSize > SIZE_LIMIT) {
break;
} else {
totalSize += tmpSize;
}
} // end-for

// 获取当前messages列表的子集合[currIndex, nextIndex)
List<Message> subList = messages.subList(currIndex, nextIndex);
// 下次遍历的开始索引
currIndex = nextIndex;
return subList;
}
}

tmpSize = tmpSize + 20:说明

生产者通过send()方法发送的Message,并不是直接将Message序列化后发送到网络上的,而是通过这个Message生成了一个字符串发送出去的。这个字符串由四部分构成:Topic、消息Body、消息日志 (占20字节),及用于描述消息的一堆属性key-value。这些属性中包含例如生产者地址、生产时间、 要发送的QueueId等。最终写入到Broker中消息单元中的数据都是来自于这些属性。



关于RocketMQ的基础API操作——这一篇就够了_java_06


5.3、消息消费端

public class BatchConsumer {

public static void main(String[] args) throws MQClientException {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("cg");
consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
consumer.subscribe("someTopicA", "*");

// 指定每次可以消费10条消息,默认为1
consumer.setConsumeMessageBatchMaxSize(10);
// 指定每次可以从Broker拉取40条消息,默认为32
consumer.setPullBatchSize(40);

consumer.registerMessageListener(new MessageListenerConcurrently() {

@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
for (MessageExt msg : msgs) {
System.out.println(msg);
}
// 消费成功的返回结果
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
// 消费异常时的返回结果
// return ConsumeConcurrentlyStatus.RECONSUME_LATER;
}
});

consumer.start();
System.out.println("Consumer Started");
}
}

Consumer的MessageListenerConcurrently监听接口的consumeMessage()方法的第一个参数为消息列表,但默认情况下每次只能消费一条消息。若要使其一次可以消费多条消息,则可以通过修改 Consumer的consumeMessageBatchMaxSize属性来指定。不过,该值不能超过32。因为默认情况下消费者每次可以拉取的消息最多是32条。若要修改一次拉取的最大值,则可通过修改Consumer的 pullBatchSize属性来指定。

存在的问题

Consumer的pullBatchSize属性与consumeMessageBatchMaxSize属性并不是设置的越大越好

  • pullBatchSize值设置的越大,Consumer每拉取一次需要的时间就会越长,且在网络上传输出现问题的可能性就越高。若在拉取过程中若出现了问题,那么本批次所有消息都需要全部重新拉取;
  • consumeMessageBatchMaxSize值设置的越大,Consumer的消息并发消费能力越低,且这批被消费的消息具有相同的消费结果。因为consumeMessageBatchMaxSize指定的一批消息只会使用一个线程进行处理,且在处理过程中只要有一个消息处理异常,则这批消息需要全部重新再次消费处理。


6、过滤消息

在大多数情况下,可以使用Message的Tag属性来简单快速的过滤信息。这个消息过滤是在Broker端进行的。对于指定Topic消息的过滤有两种过滤方式:Tag过滤与SQL过滤。

6.1、消息生产端——Tag过滤

主要是看消息消费者代码

public class TagFilterProducer {

public static void main(String[] args) throws Exception {

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

String[] tags = new String[] {"TagA", "TagB", "TagC"};

for (int i = 0; i < 15; i++) {
Message msg = new Message("TagFilterTest",
tags[i % tags.length],
"Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));

SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
}

producer.shutdown();
}
}



6.2、消息消费端——Tag过滤

通过consumer的subscribe()方法指定要订阅消息的Tag。如果订阅多个Tag的消息,Tag间使用或运算 符(双竖线||)连接。consumer.subscribe(“TagFilterTest”, “TagA || TagC”);这行代码表示只订阅了TagA和TagC的消息

TAG是RocketMQ中特有的一个消息属性。RocketMQ的最佳实践中就建议,使用RocketMQ时,一个应用可以就用一个Topic,而应用中的不同业务就用TAG来区分。

public class TagFilterConsumer {

public static void main(String[] args) throws InterruptedException, MQClientException, IOException {

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name");

consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.subscribe("TagFilterTest", "TagA || TagC");

consumer.registerMessageListener(new MessageListenerConcurrently() {

@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});

consumer.start();

System.out.printf("Consumer Started.%n");
}
}

但是,这种方式有一个很大的限制,就是一个消息只能有一个TAG,这在一些比较复杂的场景就有点不足了。 这时候,可以使用SQL表达式来对消息进行过滤。



6.3、消息生产端——SQL过滤

这个模式的关键是在消费者端使用MessageSelector.bySql(String sql)返回的一个MessageSelector。这里面的sql语句是按照SQL92标准来执行的。sql中可以使用的参数有默认的TAGS和一个在生产者中加入的a属性。

SQL92语法:

RocketMQ只定义了一些基本语法来支持这个特性。你也可以很容易地扩展它。

  • 数值比较,比如:>,>=,<,<=,BETWEEN,=;
  • 字符比较,比如:=,<>,IN;
  • IS NULL 或者 IS NOT NULL;
  • 逻辑符号 AND,OR,NOT;

常量支持类型为:

  • 数值,比如:123,3.1415;
  • 字符,比如:‘abc’,必须用单引号包裹起来;
  • NULL,特殊的常量
  • 布尔值,TRUE 或 FALSE

使用注意:只有推模式的消费者可以使用SQL过滤。拉模式是用不了的。

public class SqlFilterProducer {

public static void main(String[] args) throws Exception {

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();

String[] tags = new String[] {"TagA", "TagB", "TagC"};

for (int i = 0; i < 15; i++) {
Message msg = new Message("SqlFilterTest",
tags[i % tags.length],
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)
);
msg.putUserProperty("a", String.valueOf(i));

SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
}

producer.shutdown();
}
}

注意:

默认情况下Broker没有开启消息的SQL过滤功能,需要在Broker加载的配置文件中添加如下属性,以开启该功能:

// 1、在conf目录下的broker.conf文件中添加该配置
enablePropertyFilter=true

// 2、win版本 指定broker配置文件的形式启动
start mqbroker.cmd -n localhost:9876 -c ../conf/broker.conf



6.4、消息消费端——SQL过滤

public class SqlFilterConsumer {

public static void main(String[] args) throws Exception {

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name");
consumer.setNamesrvAddr("127.0.0.1:9876");
// Don't forget to set enablePropertyFilter=true in broker
consumer.subscribe("SqlFilterTest",
MessageSelector.bySql("(TAGS is not null and TAGS in ('TagA', 'TagB'))" +
"and (a is not null and a between 0 and 3)"));

consumer.registerMessageListener(new MessageListenerConcurrently() {

@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});

consumer.start();
System.out.printf("Consumer Started.%n");
}
}


7、事务 消息

这个事务消息是RocketMQ提供的一个非常有特色的功能,需要着重理解。

首先,我们了解下什么是事务消息。官网的介绍是:事务消息是在分布式系统中保证最终一致性的两阶段提交的消息实现。他可以保证本地事务执行与消息发送两个操作的原子性,也就是这两个操作一起成功或者一起失败。

其次,我们来理解下事务消息的编程模型。事务消息只保证消息发送者的本地事务与发消息这两个操作的原子性。因此,事务消息的示例只涉及到消息发送者,对于消息消费者来说,并没有什么特别的

7.1、消息生产端

public class TransactionProducer {
public static void main(String[] args) throws MQClientException, InterruptedException {
TransactionListener transactionListener = new TransactionListenerImpl();
TransactionMQProducer producer = new TransactionMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2000), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setName("client-transaction-msg-check-thread");
return thread;
}
});

producer.setExecutorService(executorService);
producer.setTransactionListener(transactionListener);
producer.start();

String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
for (int i = 0; i < 10; i++) {
try {
Message msg =
new Message("TopicTest", tags[i % tags.length], "KEY" + i,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.sendMessageInTransaction(msg, null);
System.out.printf("%s%n", sendResult);

Thread.sleep(10);
} catch (MQClientException | UnsupportedEncodingException e) {
e.printStackTrace();
}
}

for (int i = 0; i < 100000; i++) {
Thread.sleep(1000);
}
producer.shutdown();
}
}

事务消息的关键是在TransactionMQProducer中指定了一个TransactionListener事务监听器,这个事务监听器就是事务消息的关键控制器。

public class TransactionListenerImpl implements TransactionListener {
//在提交完事务消息后执行。
//返回COMMIT_MESSAGE状态的消息会立即被消费者消费到。
//返回ROLLBACK_MESSAGE状态的消息会被丢弃。
//返回UNKNOWN状态的消息会由Broker过一段时间再来回查事务的状态。
@Override
public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
String tags = msg.getTags();
//TagA的消息会立即被消费者消费到
if(StringUtils.contains(tags,"TagA")){
return LocalTransactionState.COMMIT_MESSAGE;
//TagB的消息会被丢弃
}else if(StringUtils.contains(tags,"TagB")){
return LocalTransactionState.ROLLBACK_MESSAGE;
//其他消息会等待Broker进行事务状态回查。
}else{
return LocalTransactionState.UNKNOW;
}
}
//在对UNKNOWN状态的消息进行状态回查时执行。返回的结果是一样的。
@Override
public LocalTransactionState checkLocalTransaction(MessageExt msg) {
String tags = msg.getTags();
//TagC的消息过一段时间会被消费者消费到
if(StringUtils.contains(tags,"TagC")){
return LocalTransactionState.COMMIT_MESSAGE;
//TagD的消息也会在状态回查时被丢弃掉
}else if(StringUtils.contains(tags,"TagD")){
return LocalTransactionState.ROLLBACK_MESSAGE;
//剩下TagE的消息会在多次状态回查后最终丢弃
}else{
return LocalTransactionState.UNKNOW;
}
}
}



7.2、消息消费端

消息消费端代码没有区别,可参考普通消息的消息消费端代码示例。



7.3、事务消息限制

1、事务消息不支持延迟消息和批量消息。

​ 2、为了避免单个消息被检查太多次而导致半队列消息累积,我们默认将单个消息的检查次数限制为 15 次,但是用户可以通过 Broker 配置文件的 ​​transactionCheckMax​​​参数来修改此限制。如果已经检查某条消息超过 N 次的话( N = ​​transactionCheckMax​​​ ) 则 Broker 将丢弃此消息,并在默认情况下同时打印错误日志。用户可以通过重写 ​​AbstractTransactionCheckListener​​ 类来修改这个行为。

回查次数是由BrokerConfig.transactionCheckMax这个参数来配置的,默认15次,可以在broker.conf中覆盖。 然后实际的检查次数会在message中保存一个用户属性MessageConst.PROPERTY_TRANSACTION_CHECK_TIMES。这个属性值大于transactionCheckMax,就会丢弃。 这个用户属性值会按回查次数递增,也可以在Producer中自行覆盖这个属性。

​ 3、事务消息将在 Broker 配置文件中的参数 transactionMsgTimeout 这样的特定时间长度之后被检查。当发送事务消息时,用户还可以通过设置用户属性 CHECK_IMMUNITY_TIME_IN_SECONDS 来改变这个限制,该参数优先于 ​​transactionMsgTimeout​​ 参数。

由BrokerConfig.transactionTimeOut这个参数来配置。默认6秒,可以在broker.conf中进行修改。 另外,也可以给消息配置一个MessageConst.PROPERTY_CHECK_IMMUNITY_TIME_IN_SECONDS属性来给消息指定一个特定的消息回查时间。 msg.putUserProperty(MessageConst.PROPERTY_CHECK_IMMUNITY_TIME_IN_SECONDS, “10000”); 这样就是10秒。

4、事务性消息可能不止一次被检查或消费。

5、提交给用户的目标主题消息可能会失败,目前这依日志的记录而定。它的高可用性通过 RocketMQ 本身的高可用性机制来保证,如果希望确保事务消息不丢失、并且事务完整性得到保证,建议使用同步的双重写入机制。

6、事务消息的生产者ID不能与其他类型消息的生产者ID共享。与其他类型的消息不同,事务消息允许反向查询、MQ服务器能通过它们的生产者ID查询到消费者。

7.4、事务消息实现原理

例子:工行用户A向建行用户B转账1万元



关于RocketMQ的基础API操作——这一篇就够了_发送消息_07

  1. 工行系统发送一个给B增款1万元的同步消息M给Broker
  2. 消息被Broker成功接收后,向工行系统发送成功ACK
  3. 工行系统收到成功ACK后从用户A中扣款1万元
  4. 建行系统从Broker中获取到消息M
  5. 建行系统消费消息M,即向用户B中增加1万元


解决模型:

让第1、2、3步具有原子性,要么全部成功,要么全部失败。即消息发送成功后,必须要 保证扣款成功。如果扣款失败,则回滚发送成功的消息。而该思路即使用事务消息。这里要使用分布 式事务解决方案



关于RocketMQ的基础API操作——这一篇就够了_分布式_08

使用事务消息来处理该需求场景:

  1. 事务管理器TM向事务协调器TC发起指令,开启全局事务
  2. 工行系统发一个给B增款1万元的事务消息M给TC
  3. TC会向Broker发送半事务消息prepareHalf,将消息M预提交到Broker。此时的建行系统是看不到Broker中的消息M的
  4. Broker会将预提交执行结果Report给TC
  5. 如果预提交失败,则TC会向TM上报预提交失败的响应,全局事务结束;如果预提交成功,TC会调用工行系统的回调操作,去完成工行用户A的预扣款1万元的操作
  6. 工行系统会向TC发送预扣款执行结果,即本地事务的执行状态
  7. TC收到预扣款执行结果后,会将结果上报给TM。预扣款执行结果存在三种可能性:COMMIT_MESSAGE、ROLLBACK_MESSAGE、UNKNOW
  8. TM会根据上报结果向TC发出不同的确认指令
  • 若预扣款成功(本地事务状态为COMMIT_MESSAGE),则TM向TC发送Global Commit指令
  • 若预扣款失败(本地事务状态为ROLLBACK_MESSAGE),则TM向TC发送Global Rollback指令
  • 若现未知状态(本地事务状态为UNKNOW),则会触发工行系统的本地事务状态回查操作。回查操作会将回查结果,即COMMIT_MESSAGE或ROLLBACK_MESSAGE Report给TC。TC将结果上报给TM,TM会再向TC发送最终确认指令Global Commit或Global Rollback
  1. TC在接收到指令后会向Broker与工行系统发出确认指令
  • TC接收的若是Global Commit指令,则向Broker与工行系统发送Branch Commit指令。此时Broker中的消息M才可被建行系统看到;此时的工行用户A中的扣款操作才真正被确认
  • TC接收到的若是Global Rollback指令,则向Broker与工行系统发送Branch Rollback指令。此时Broker中的消息M将被撤销;工行用户A中的扣款操作将被回滚


再次抽象找个分布式事务模型并结合RocketMQ的机制,参见下图:



关于RocketMQ的基础API操作——这一篇就够了_分布式_09


事务消息机制的关键是在发送消息时,会将消息转为一个half半消息,并存入RocketMQ内部的一个 RMQ_SYS_TRANS_HALF_TOPIC 这个Topic,这样对消费者是不可见的。再经过一系列事务检查通过后,再将消息转存到目标Topic,这样对消费者就可见了。

事务消息只保证了发送者本地事务和发送消息这两个操作的原子性,但是并不保证消费者本地事务的原子性,所以,事务消息只保证了分布式事务的一半。但是即使这样,对于复杂的分布式事务,RocketMQ提供的事务消息也是目前业内最佳的降级方案



更多关于XA分布式事务解决方案的细节,本文不再过多赘述。


二、概念补充

1、消息发送重试机制

Producer对发送失败的消息进行重新发送的机制,称为消息发送重试机制,也称为消息重投机制

对于消息重投,需要注意以下几点:

  • 生产者在发送消息时,若采用同步或异步发送方式,发送失败会重试,但oneway消息发送方式发送失败是没有重试机制的
  • 只有普通消息具有发送重试机制,顺序消息是没有的
  • 消息重投机制可以保证消息尽可能发送成功、不丢失,但可能会造成消息重复。消息重复在RocketMQ中是无法避免的问题
  • 消息重复在一般情况下不会发生,当出现消息量大、网络抖动,消息重复就会成为大概率事件
  • producer主动重发、consumer负载变化(发生Rebalance,不会导致消息重复,但可能出现重复消费)也会导致重复消息
  • 消息重复无法避免,但要避免消息的重复消费。
  • 避免消息重复消费的解决方案是,为消息添加唯一标识(例如消息key),使消费者对消息进行消费判断来避免重复消费
  • 消息发送重试有三种策略可以选择:同步发送失败策略、异步发送失败策略、消息刷盘失败策略


1.1、同步发送失败策略

对于普通消息,消息发送默认采用round-robin策略来选择所发送到的队列。如果发送失败,默认重试2次。但在重试时是不会选择上次发送失败的Broker,而是选择其它Broker。当然,若只有一个Broker其也只能发送到该Broker,但其会尽量发送到该Broker上的其它Queue。

// 具体的代码实例,可以参考第一章节中出现的生产者端代码示例
producer.setRetryTimesWhenSendFailed(3);

同时,Broker还具有失败隔离功能,使Producer尽量选择未发生过发送失败的Broker作为目标Broker。其可以保证其它消息尽量不发送到问题Broker,为了提升消息发送效率,降低消息发送耗时。

如果超过重试次数,则抛出异常,由Producer去保证消息不丢。当然当生产者出现 RemotingException、MQClientException和MQBrokerException时,Producer会自动重投消息。



1.2、异步发送失败策略

异步发送失败重试时,异步重试不会选择其他broker,仅在同一个broker上做重试,所以该策略无法保证消息不丢。

// 指定异步发送失败后不进行重试发送
producer.setRetryTimesWhenSendAsyncFailed(0)



1.3、消息刷盘失败策略

消息刷盘超时(Master或Slave)或slave不可用(slave在做数据同步时向master返回状态不是SEND_OK)时,默认是不会将消息尝试发送到其他Broker的。不过,对于重要消息可以通过在Broker 的配置文件设置retryAnotherBrokerWhenNotStoreOK属性为true来开启


2、消息消费重试机制

2.1、顺序消息的消费重试

对于顺序消息,当Consumer消费消息失败后,为了保证消息的顺序性,其会自动不断地进行消息重试,直到消费成功。消费重试默认间隔时间为1000毫秒。重试期间应用会出现消息消费被阻塞的情 况。

// 顺序消息消费失败的消费重试时间间隔,单位毫秒,默认为1000,其取值范围为[10,30000]
consumer.setSuspendCurrentQueueTimeMillis(100);

由于对顺序消息的重试是无休止的,不间断的,直至消费成功,所以,对于顺序消息的消费, 务必要保证应用能够及时监控并处理消费失败的情况,避免消费被永久性阻塞。

注意,顺序消息没有发送失败重试机制,但具有消费失败重试机制



2.2、无序消息的消费重试

对于无序消息(普通消息、延时消息、事务消息),当Consumer消费消息失败时,可以通过设置返回状态达到消息重试的效果。不过需要注意,无序消息的重试只对集群消费方式生效,广播消费方式不提供失败重试特性。即对于广播消费,消费失败后,失败消息不再重试,继续消费后续消息。



2.3、消费重试次数与间隔

对于无序消息集群消费下的重试消费,每条消息默认最多重试16次,但每次重试的间隔时间是不同 的,会逐渐变长。每次重试的间隔时间如下表

重试次数

与上次重试的间隔时间

重试次数

与上次重试的间隔时间

1

10秒

9

7分钟

2

30秒

10

8分钟

3

1分钟

11

9分钟

4

2分钟

12

10分钟

5

3分钟

13

20分钟

6

4分钟

14

30分钟

7

5分钟

15

1小时

8

6分钟

16

2小时

若一条消息在一直消费失败的前提下,将会在正常消费后的第4小时46分后进行第16次重试。 若仍然失败,则将消息投递到死信队列

// 修改消费重试次数
consumer.setMaxReconsumeTimes(10);

对于修改过的重试次数,将按照以下策略执行:

  • 若修改值小于16,则按照指定间隔进行重试;
  • 若修改值大于16,则超过16次的重试时间间隔均为2小时。

对于Consumer Group,若仅修改了一个Consumer的消费重试次数,则会应用到该Group中所有其它Consumer实例。若出现多个Consumer均做了修改的情况,则采用覆盖方式生效。即最后被 修改的值会覆盖前面设置的值。



2.4、重试队列

对于需要重试消费的消息,并不是Consumer在等待了指定时长后再次去拉取原来的消息进行消费, 是将这些需要重试消费的消息放入到了一个特殊Topic的队列中,而后进行再次消费的。这个特殊的队 列就是重试队列。

当出现需要进行重试消费的消息时,Broker会为每个消费组都设置一个Topic名称 为%RETRY%consumerGroup@consumerGroup 的重试队列。

  1. 这个重试队列是针对消息才组的,而不是针对每个Topic设置的(一个Topic的消息可以让多 个消费者组进行消费,所以会为这些消费者组各创建一个重试队列)
  2. 只有当出现需要进行重试消费的消息时,才会为该消费者组创建重试队列

注意,消费重试的时间间隔与延时消费的延时等级十分相似,除了没有延时等级的前两个时间 外,其它的时间都是相同的



Broker对于重试消息的处理是通过延时消息实现的。先将消息保存到SCHEDULE_TOPIC_XXXX延迟队 列中,延迟时间到后,会将消息投递到%RETRY%consumerGroup@consumerGroup重试队列中。



2.5、消费重试配置方式

集群消费方式下,消息消费失败后若希望消费重试,则需要在消息监听器接口的实现中明确进行如下三 种方式之一的配置:

  • 方式1:返回ConsumeConcurrentlyStatus.RECONSUME_LATER(推荐)
  • 方式2:返回Null
  • 方式3:抛出异常


2.6、 消费不重试配置方式

集群消费方式下,消息消费失败后若不希望消费重试,则在捕获到异常后同样也返回与消费成功后的相同的结果,即ConsumeConcurrentlyStatus.CONSUME_SUCCESS,则不进行消费重试


3、死信队列

3.1、什么是死信队列

当一条消息初次消费失败,消息队列会自动进行消费重试;达到最大重试次数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息,此时,消息队列不会立刻将消息丢弃,而是将其发送到该消费者对应的特殊队列中。这个队列就是死信队列(Dead-Letter Queue,DLQ),而其中的消息则称为死信消息(Dead-Letter Message,DLM)。



3.2、死信队列的特征

  • 死信队列中的消息不会再被消费者正常消费,即DLQ对于消费者是不可见的
  • 死信存储有效期与正常消息相同,均为 3 天(commitlog文件的过期时间),3 天后会被自动删除
  • 死信队列就是一个特殊的Topic,名称为%DLQ%consumerGroup@consumerGroup ,即每个消费者组都有一个死信队列
  • 如果⼀个消费者组未产生死信消息,则不会为其创建相应的死信队列


3.3、死信消息的处理

实际上,当⼀条消息进入死信队列,就意味着系统中某些地方出现了问题,从而导致消费者无法正常消费该消息,比如代码中原本就存在Bug。因此,对于死信消息,通常需要开发人员进行特殊处理。最关键的步骤是要排查可疑因素,解决代码中可能存在的Bug,然后再将原来的死信消息再次进行投递消费


三、整合SpringBoot使用

1、引入依赖

在使用SpringBoot的starter集成包时,要特别注意版本。因为SpringBoot集成RocketMQ的starter依赖是由Spring社区提供的,目前正在快速迭代的过程当中,不同版本之间的差距非常大,甚至基础的底层对象都会经常有改动。例如如果使用rocketmq-spring-boot-starter:2.0.4版本开发的代码,升级到目前最新的rocketmq-spring-boot-starter:2.1.1后,基本就用不了了

<dependencies>
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-spring-boot-starter</artifactId>
<version>2.1.1</version>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</exclusion>
<exclusion>
<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
</exclusion>
<exclusion>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.1.6.RELEASE</version>
</dependency>
</dependencies>



2、主启动类+配置

@SpringBootApplication
public class RocketMQScApplication {

public static void main(String[] args) {
SpringApplication.run(RocketMQScApplication.class,args);
}
}

#NameServer地址
rocketmq.name-server=192.168.232.128:9876
#默认的消息生产者组
rocketmq.producer.group=springBootGroup



2、消息生产端

1、controller层传入topic名为topic的队列中发送消息

@RestController
@RequestMapping("/MQTest")
public class MQTestController {

private final String topic = "TestTopic";

@Resource
private SpringProducer producer;

@RequestMapping("/sendMessage")
public String sendMessage(String message){
producer.sendMessage(topic,message);
return "消息发送完成";
}
}

2、service层,调用Spring封装好的RocketMQTemplateBean对象,完成消息的发送

@Component
public class SpringProducer {

@Resource
private RocketMQTemplate rocketMQTemplate;

public void sendMessage(String topic,String msg){
this.rocketMQTemplate.convertAndSend(topic,msg);
}
}



3、消息消费端

SpringBoot集成RocketMQ,消费者部分的核心就在这个@RocketMQMessageListener注解上。所有消费者的核心功能也都会集成到这个注解中。所以我们还要注意下这个注解里面的属性:

例如:消息过滤可以由里面的selectorType属性和selectorExpression来定制

消息有序消费还是并发消费则由consumeMode属性定制。

消费者是集群部署还是广播部署由messageModel属性定制。

@Component
@RocketMQMessageListener(consumerGroup = "MyConsumerGroup", topic = "TestTopic",consumeMode= ConsumeMode.CONCURRENTLY)
public class SpringConsumer implements RocketMQListener<String> {
@Override
public void onMessage(String message) {
System.out.println("Received message : "+ message);
}
}



案例完成。


举报

相关推荐

0 条评论