目录
1.写在前面
Flink CDC有两种实现方式,一种是DataStream,另一种是FlinkSQL方式。
- DataStream方式:优点是可以应用于多库多表,缺点是需要自定义反序列化器(灵活)
- FlinkSQL方式:优点是不需要自定义反序列化器,缺点是只能应用于单表查询
2.Maven依赖
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.12.7</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.12.7</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.12.7</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.7</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.49</version>
</dependency>
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.2.0</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.75</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.12</artifactId>
<version>1.12.7</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source>
<target>8</target>
</configuration>
</plugin>
</plugins>
</build>
3.代码实现-普通实现
package com.atguigu;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
public class FlinkCDCWithSQL {
public static void main(String[] args) throws Exception {
//1.获取执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
//2.DDL方式建表,flink_sql的方式只能监控一张表
tableEnv.executeSql("CREATE TABLE mysql_binlog ( " +
" id STRING NOT NULL, " +
" tm_name STRING, " +
" logo_url STRING " +
") WITH ( " +
" 'connector' = 'mysql-cdc', " +
" 'hostname' = '192.168.0.111', " +
" 'port' = '3306', " +
" 'username' = 'root', " +
" 'password' = '123456', " +
" 'database-name' = 'gmall2021', " +
" 'table-name' = 'base_trademark' " +
")");
//3.查询数据
Table table = tableEnv.sqlQuery("select * from mysql_binlog");
//4.将动态表转换为流
DataStream<Tuple2<Boolean, Row>> retractStream = tableEnv.toRetractStream(table, Row.class);
retractStream.print();
//5.启动任务
env.execute("FlinkCDCWithSQL");
}
}
4.集群测试
4.1 环境准备
- 启动ha-hadoop集群:sh ha-hadoop.sh start
-
创建作业归档目录,只需要创建一次:hdfs dfs -mkdir /flink-jobhistory
-
启动Flink集群和任务历史服务
- start-cluster.sh
- historyserver.sh start
- 运行该Flink任务:/opt/software/flink-1.12.7/bin/flink run -m yarn-cluster -ys 1 -ynm gmall-flink-cdc -c com.ucas.FlinkCDCWithCustomerDeserialization -d /root/mySoftware/gmall-flink-cdc.jar
4.2 查看任务结果
(1)打开yarn,查看任务:http://192.168.0.112:8088/cluster/apps,并且通过id点击进去
(2)点击Tracking URL,进入FlinkWeb界面
(3) 打开左侧TaskManagers中的Stdout查看控制台输出信息