0
点赞
收藏
分享

微信扫一扫

深度学习 Day1

zmhc 2022-02-20 阅读 93

神经网络

神经元模型——MP-模型

将许多神经元按一定的层次结构连接起来,即为神经网络。 

一个神经元的功能是求得输入向量和权向量的点积后,经一个非线性传递函数得到一个标量。

一个简单的神经元如图: 

(图源网络) 

其中:

  • X1,X2,X3...Xn为各个输入的分量
  • Wj1,Wj2,Wj3...Wn为各个输入分量对应的权值参数
  • θ为偏置
  • f为激活函数
  • Yi为神经元的输出

数学公式即为:

 

1.单层神经网络

如图: 

 

(图源网络),由四个感知机构成的)

 2.感知机(两层神经网络)

 

 作用:

 将一个n维空间分成两部分,给定一个输入变量,可以判断输出的结果是在两部分中的哪一部分。

 ➡二分类模型,给定阈值,判断数据属于哪一部分 

公式:

 

 

3.多层神经网络

结构:

  • 输入层:众多神经元接受大量消息,输入的消息称为输入向量。
  • 输出层:输出的消息称为输出向量。
  • 隐藏层(隐层):是输入层和输出层之间众多神经元和链接组成的各个层面,可以有一层或多层,隐层的神经元数目不定,但数目越多的神经网络的非线性越显著,从而神经网络的强健性更显著。

 (图源网络)

全连接层

全连接层就是在前一层的输出的基础上进行一次Y = Wx + θ

4.激活函数

  • f(x1+x2) = y1+y2    或     f(kx1) = ky1        此类都叫线性函数

作用:增加模型的非线性分割能力,提高模型的稳健性

 

 

 

 

  •  sigmoid只会输出正数,靠近0的输出变化率大
  • tanh可以输出负数
  • Relu只能输入大于0的(常用于输入为图片格式)

 

 

 

举报

相关推荐

leetcode 学习day1

Python学习day1

Vue学习Day1

Java学习Day1

flask学习-day1

每日学习day1

前端学习 day1

RHCSA学习笔记 day1

多线程学习day1

0 条评论