有类型操作
flatMap
通过 flatMap
可以将一条数据转为一个数组, 后再展开这个数组放入 Dataset
).toDS()
ds1.flatMap(item => item.split(" ")).show()
map
可以将数据集中每条数据转为另一种形式
val ds2=Seq(Person("zhangsan",15),Person("lisi",32)).toDS()
ds2.map(p => Person(p.name,p.age*2)).show()
mapPartitions
mapPartitions
和 map
一样, 但是 map
的处理单位是每条数据, mapPartitions
的处理单位是每个分区
ds2.mapPartitions(item => {
val persons = item.map(p => Person(p.name, p.age * 2))
persons
}).show()
transform
map
和 mapPartitions
以及 transform
都是转换, map
和 mapPartitions
是针对数据, 而 transform
是针对整个数据集, 这种方式最大的区别就是 transform
可以直接拿到 Dataset
进行操作
@Test
def transform(): Unit ={
val ds=spark.range(10)
ds.transform(dataset => dataset.withColumn("doubleid",'id*2)).show()
}
as
as[Type]
算子的主要作用是将弱类型的 Dataset
转为强类型的 Dataset
,
@Test
def as(): Unit ={
val structType = StructType(
Seq(
StructField("name", StringType),
StructField("age", IntegerType),
StructField("gpa", FloatType)
)
)
val sourceDF = spark.read
.schema(structType)
.option("delimiter", "\t")
.csv("dataset/studenttab10k")
val dataset = sourceDF.as[(String,Int,Float)]
dataset.show()
}
filter
用来按照条件过滤数据集
@Test
def filter(): Unit ={
val ds=Seq(Person("zhangsan",15),Person("lisi",32)).toDS()
ds.filter(person => person.age>20).show()
}
groupByKey
grouByKey
算子的返回结果是 KeyValueGroupedDataset
, 而不是一个 Dataset
, 所以必须要先经过 KeyValueGroupedDataset
中的方法进行聚合, 再转回 Dataset
, 才能使用 Action
得出结果
@Test
def groupByKey(): Unit ={
val ds=Seq(Person("zhangsan",15),Person("zhangsan",20),Person("lisi",32)).toDS()
val grouped = ds.groupByKey(p => p.name)
val result: Dataset[(String, Long)] = grouped.count()
result.show()
}
randomSplit
randomSplit
会按照传入的权重随机将一个 Dataset
分为多个 Dataset
, 传入 randomSplit
的数组有多少个权重, 最终就会生成多少个 Dataset
, 这些权重的加倍和应该为 1, 否则将被标准化
@Test
def randomSplit(): Unit ={
val ds = spark.range(15)
val datasets: Array[Dataset[lang.Long]] = ds.randomSplit(Array[Double](2, 3))
datasets.foreach(dataset => dataset.show())
ds.sample(withReplacement = false, fraction = 0.4).show()
}
orderBy
orderBy
配合 Column
的 API
, 可以实现正反序排列
val ds=Seq(Person("zhangsan",15),Person("zhangsan",20),Person("lisi",32)).toDS()
ds.orderBy('age.desc).show() //select * from .. order by .. desc
sort
ds.sort('age.asc).show()
dropDuplicates
使用 dropDuplicates
可以去掉某一些列中重复的行
@Test
def dropDuplicates(): Unit ={
val ds=Seq(Person("zhangsan",15),Person("zhangsan",20),Person("lisi",32)).toDS()
ds.distinct().show()
ds.dropDuplicates("age").show()
}
distinct
根据所有列去重
ds.distinct().show()
集合操作
差集,交集,并集,limit
@Test
def collection(): Unit ={
val ds1=spark.range(1,10)
val ds2=spark.range(5,15)
//差集
ds1.except(ds2).show()
//交集
ds1.intersect(ds2).show()
//并集
ds1.union(ds2).show()
//limit
ds1.limit(3).show()
}
无类型转换
选择
select:选择某些列出现在结果集中
selectExpr
:在 SQL
语句中, 经常可以在 select
子句中使用 count(age)
, rand()
等函数, 在 selectExpr
中就可以使用这样的 SQL
表达式, 同时使用 select
配合 expr
函数也可以做到类似的效果
@Test
def select(): Unit ={
val ds=Seq(Person("zhangsan",15),Person("zhangsan",20),Person("lisi",32)).toDS()
ds.select('name).show()
ds.selectExpr("sum(age)").show()
}
withColumn:通过 Column
对象在 Dataset
中创建一个新的列或者修改原来的列
withColumnRenamed:修改列名
@Test
def withcolumn(): Unit ={
import org.apache.spark.sql.functions._
val ds=Seq(Person("zhangsan",15),Person("zhangsan",20),Person("lisi",32)).toDS()
ds.withColumn("random",expr("rand()")).show()
ds.withColumn("name_new",'name).show()
ds.withColumn("name_jok",'name === "").show()
ds.withColumnRenamed("name","new_name").show()
}
剪除
drop:减掉某列
@Test
def drop(): Unit ={
import spark.implicits._
val ds = Seq(Person("zhangsan", 12), Person("zhangsan", 8), Person("lisi", 15)).toDS()
ds.drop('age).show()
}
集合
groupBy:按给定的行进行分组
@Test
def groupBy(): Unit ={
import spark.implicits._
val ds = Seq(Person("zhangsan", 12), Person("zhangsan", 8), Person("lisi", 15)).toDS()
ds.groupBy('name).count().show()
}
Column 对象
创建
val spark=SparkSession.builder().master("local[6]").appName("trans").getOrCreate()
import spark.implicits._
@Test
def column(): Unit ={
import spark.implicits._
val personDF = Seq(Person("zhangsan", 12), Person("zhangsan", 8), Person("lisi", 15)).toDF()
val c1: Symbol ='name
val c2: ColumnName =$"name"
import org.apache.spark.sql.functions._
val c3: Column =col("name")
//val c4: Column =column("name")
val c5: Column =personDF.col("name")
val c6: Column =personDF.apply("name")
val c7: Column =personDF("name")
personDF.select(c1).show()
personDF.where(c1 ==="zhangsan").show()
}
别名和转换
@Test
def as(): Unit ={
val personDF = Seq(Person("zhangsan", 12), Person("zhangsan", 8), Person("lisi", 15)).toDF()
import org.apache.spark.sql.functions._
//as 用法1:更换数据类型
personDF.select(col("age").as[Long]).show()
personDF.select('age.as[Long]).show()
//as:用法二
personDF.select(col("age").as("new_age")).show()
personDF.select('age as 'new_age ).show()
}
添加列
val ds = Seq(Person("zhangsan", 12), Person("zhangsan", 8), Person("lisi", 15)).toDS()
//增加一列
操作
like:模糊查询;isin:是否含有;sort:排序
//模糊查询
ds.where('name like "zhang%").show()
//排序
ds.sort('age asc).show()
//枚举判断
聚合
package cn.itcast.spark.sql
import org.apache.spark.sql.{RelationalGroupedDataset, SparkSession}
import org.apache.spark.sql.types.{DoubleType, IntegerType, StructField, StructType}
import org.junit.Test
class Aggprocessor {
val spark=SparkSession.builder().master("local[6]").appName("trans").getOrCreate()
import spark.implicits._
@Test
def groupBy(): Unit ={
val schema = StructType(
List(
StructField("id", IntegerType),
StructField("year", IntegerType),
StructField("month", IntegerType),
StructField("day", IntegerType),
StructField("hour", IntegerType),
StructField("season", IntegerType),
StructField("pm", DoubleType)
)
)
//读取数据集
val sourceDF=spark.read
.schema(schema)
.option("header",value = true)
.csv("dataset/beijingpm_with_nan.csv")
//去掉pm为空的
val clearDF=sourceDF.where('pm =!= Double.NaN)
//分组
val groupedDF: RelationalGroupedDataset = clearDF.groupBy('year, 'month)
import org.apache.spark.sql.functions._
//进行聚合
groupedDF.agg(avg('pm) as("pm_avg"))
.orderBy('pm_avg desc)
.show()
//方法二
groupedDF.avg("pm")
.select($"avg(pm)" as "pm_avg")
.orderBy('pm_avg desc)
.show()
groupedDF.max("pm").show()
groupedDF.min("pm").show()
groupedDF.sum("pm").show()
groupedDF.count().show()
groupedDF.mean("pm").show()
}
}
连接
无类型连接 join
@Test
def join(): Unit ={
val person = Seq((0, "Lucy", 0), (1, "Lily", 0), (2, "Tim", 2), (3, "Danial", 0))
.toDF("id", "name", "cityId")
val cities = Seq((0, "Beijing"), (1, "Shanghai"), (2, "Guangzhou"))
.toDF("id", "name")
val df=person.join(cities, person.col("cityId") === cities.col("id"))
.select(person.col("id"),
person.col("name"),
cities.col("name") as "city")
df.createOrReplaceTempView("user_city")
spark.sql("select id ,name,city from user_city where city=='Beijing'")
.show()
}
连接类型
交叉连接:cross交叉连接就是笛卡尔积, 就是两个表中所有的数据两两结对
@Test
def crossJoin(): Unit ={
person.crossJoin(cities)
.where(person.col("cityId") === cities.col("id"))
.show()
spark.sql("select p.id,p.name,c.name from person p cross join cities c where p.cityId = c.id")
.show()
}
内连接:就是按照条件找到两个数据集关联的数据, 并且在生成的结果集中只存在能关联到的数据
@Test
def inner(): Unit ={
person.join(cities,person.col("cityId")===cities.col("id"),joinType = "inner")
.show()
spark.sql("select p.id,p.name,c.name from person p inner join cities c on p.cityId=c.id").show()
}
全外连接:
@Test
def fullOuter(): Unit ={
person.join(cities,person.col("cityId") === cities.col("id"),joinType = "full")
.show()
spark.sql("select p.id,p.name,c.name from person p full outer join cities c on p.cityId=c.id")
.show()
}
左外连接
)
.show()
右外连接
person.join(cities,person.col("cityId") === cities.col("id"),joinType = "right")
.show()