0
点赞
收藏
分享

微信扫一扫

《机器学习》实验三 支持向量机(桂电)

基础解系的概念

31线性相关,线性无关,拓展与证明

n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。

n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。

32极大线性无关组

33向量组的等价

34线性空间基变换

待研究的内容:

1线性无关向量的正交化

2矩阵的特征值和特征向量

3相似矩阵和相似对角化

4二次型及标准二次型

¥35单位正交基向量

两个向量的数量积等于0,则称两者正交或者垂直

研究它的原因:正交基向量,单位正交基向量有非常良好的性质

36斯密特正交化

37特征值和特征向量

概念篇

计算篇

性质篇

引用篇

39特征值和特征向量的性质

40特征值和特征向量的计算例题

特征值和特征向量的性质

【补充】linear algebra and its applicationsCH4 vector spaces

4.1vector spaces and subspaces

4.2null spaces,column spaces, and linear transformation

4.3linear independent set:bases

4.4coordinate systems

4.5the dimension of a vector space

4.6rank

4.7change of basis

4.8applications to different equations

4.9applications to markov chains

41相似矩阵

举报

相关推荐

0 条评论