文章目录
- 概率状态空间模型(Probabilistic State Space Models)
- 概率状态空间模型的定义
- 状态 x k \boldsymbol{x}_k xk的马尔可夫性质(*Markov property of states*)
- 观测向量 y k \boldsymbol{ y}_k yk的条件独立性(*Conditional independence of measurements*)
概率状态空间模型(Probabilistic State Space Models)
概率状态空间模型的定义
(Probabilistic state space model) A probabilistic state space model or non-linear filtering model consists of a sequence of conditional probability distributions:
x
k
∼
p
(
x
k
∣
x
k
−
1
)
y
k
∼
p
(
y
k
∣
x
k
)
(1)
\begin{aligned} \boldsymbol x_k &\sim p(\boldsymbol x_k | \boldsymbol x_{k-1}) \\ \boldsymbol y_k &\sim p(\boldsymbol y_k | \boldsymbol x_k) \end{aligned} \tag{1}
xkyk∼p(xk∣xk−1)∼p(yk∣xk)(1) for
k
=
1
,
2
,
⋯
k = 1,2,\cdots
k=1,2,⋯,其中
- x k ∈ R n \boldsymbol x_k \in \mathbb{R}^{n} xk∈Rn是系统在时刻 k k k的状态;
- y k ∈ R m \boldsymbol y_k \in \mathbb{R}^{m} yk∈Rm是时刻 k k k的观测向量;
- p ( x k ∣ x k − 1 ) p(\boldsymbol x_k | \boldsymbol x_{k-1}) p(xk∣xk−1)是一个动态系统模型,描述了系统的随机动态变化(stochasticc dynamics);
- p ( y k ∣ x k ) p(\boldsymbol y_k|\boldsymbol x_k) p(yk∣xk)是测量模型,描述了给定状态条件下的测量模型。
并且认为该模型为马尔可夫模型,如下图所示。这意味着它有两个重要性质。

状态 x k \boldsymbol{x}_k xk的马尔可夫性质(Markov property of states)
The states
{
x
k
:
k
=
0
,
1
,
2
,
⋯
}
\{ \boldsymbol x_k: k=0,1,2,\cdots \}
{xk:k=0,1,2,⋯} form a Markov sequence (or Markov chain if the state is discrete.). This Markov property means that
x
k
\boldsymbol x_k
xk (and actually the whole future
x
k
+
1
,
x
k
+
2
,
⋯
\boldsymbol x_{k+1}, \boldsymbol x_{k+2}, \cdots
xk+1,xk+2,⋯) given
x
k
−
1
\boldsymbol x_{k-1}
xk−1 is independent of anything that has happened before the time step
k
−
1
k-1
k−1:
p
(
x
k
∣
x
1
:
k
−
1
,
y
1
:
k
−
1
)
=
p
(
x
k
∣
x
k
−
1
)
(2)
p(\boldsymbol x_k | \boldsymbol x_{1:k-1}, \boldsymbol y_{1:k-1}) = p(\boldsymbol x_k|\boldsymbol x_{k-1}) \tag{2}
p(xk∣x1:k−1,y1:k−1)=p(xk∣xk−1)(2)
这里我们需要注意性质里边没有提到
x
k
\boldsymbol x_k
xk之后的状态(future state),由上图可知,我们知道
x
k
\boldsymbol x_k
xk与之后的状态/观测向量是有联系的,比如说:
∃
T
>
k
\exist T > k
∃T>k
p
(
x
k
∣
x
1
:
k
−
1
,
y
1
:
T
)
=
p
(
x
k
∣
x
k
−
1
,
y
k
:
T
)
p(\boldsymbol x_k | \boldsymbol x_{1:k-1}, \boldsymbol y_{1:T}) = p(\boldsymbol x_k|\boldsymbol x_{k-1}, \boldsymbol y_{k:T})
p(xk∣x1:k−1,y1:T)=p(xk∣xk−1,yk:T)
Also, the past is independent of the future given the present:
p
(
x
k
−
1
∣
x
k
:
T
,
y
k
:
T
)
=
p
(
x
k
−
1
∣
x
k
)
(3)
p(\boldsymbol x_{k-1} | \boldsymbol x_{k:T}, \boldsymbol y_{k:T}) = p(\boldsymbol x_{k-1}|\boldsymbol x_{k}) \tag{3}
p(xk−1∣xk:T,yk:T)=p(xk−1∣xk)(3)
类似地,我们也需要注意,
x
k
\boldsymbol x_k
xk与之前的状态/观测向量是有联系的,比如说:
p
(
x
k
−
1
∣
x
k
:
T
,
y
1
:
T
)
=
p
(
x
k
−
1
∣
x
k
,
y
1
:
k
−
1
)
p(\boldsymbol x_{k-1} | \boldsymbol x_{k:T}, \boldsymbol y_{1:T}) = p(\boldsymbol x_{k-1}|\boldsymbol x_{k}, \boldsymbol y_{1:k-1})
p(xk−1∣xk:T,y1:T)=p(xk−1∣xk,y1:k−1)
观测向量 y k \boldsymbol{ y}_k yk的条件独立性(Conditional independence of measurements)
The current measurement
y
k
\boldsymbol{ y}_k
yk given the current state
x
k
\boldsymbol{ x}_k
xk is conditionally independent of the measurement and state histories:
p
(
y
k
∣
x
1
:
k
,
y
1
:
k
−
1
)
=
p
(
y
k
∣
x
k
)
p(\boldsymbol y_k|\boldsymbol x_{1:k}, \boldsymbol y_{1:k-1}) = p(\boldsymbol y_k | \boldsymbol x_k)
p(yk∣x1:k,y1:k−1)=p(yk∣xk)