今晚开车去看灯啦。很开心
言归正传,有两种方法可以用GPU训练
方法一:
在
上加上
if torch.cuda.is_available():
name = name.cuda()
方法二:
先加上这行代码
device = torch.device("cuda")
如果想用cpu,就直接把cuda改成cpu即可
然后还是在
上加上
name = name.to(device)
示例:
因为方法二比较常用,所以我使用方法二来进行演示
import torch
import torchvision.datasets
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch.utils.data import DataLoader
device = torch.device("cuda")
train_data = torchvision.datasets.CIFAR10("data",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# 计算数据集的长度
train_data_size = len(train_data)
print("训练数据集的长度为{}".format(train_data_size))
test_data_size = len(test_data)
print("测试数据集的长度为{}".format(test_data_size))
# 利用DataLoader来加载数据集
train_dataLoader = DataLoader(train_data,batch_size=64)
test_dataLoader = DataLoader(test_data,batch_size=64)
# 创建网络模型
star = Star()
star = star.to(device)
#损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 1e-2 # 学习效率
optimizer = torch.optim.SGD(star.parameters(),lr=learning_rate)
# 设置训练网络中的一些参数
# 记录训练次数
total_train_step = 0
# 记录测试次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加tensorboard
writer = SummaryWriter("logs")
for i in range(epoch):
print("-----第{}轮训练开始------".format(i+1))
# 训练步骤开始
for data in train_dataLoader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
output = star(imgs)
#优化器优化模型
loss = loss_fn(output,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step+=1
if total_train_step % 100 == 0:
print("训练次数: {},Loss: {}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataLoader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
output = star(imgs)
loss =loss_fn(output,targets)
total_test_loss+=loss.item()
accuracy = (output.argmax(1) == targets).sum()
total_accuracy+=accuracy
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",(total_accuracy/test_data_size),total_test_step)
total_test_step+=1
# 保存模型
torch.save(star,"star_{}.pth".format(i))
print("模型已保存")
writer.close()
注意:
1.GPU训练只有电脑有gpu的情况下才能使用
2.如果没有GPU,但是想用,可以利用谷歌的google colab