0
点赞
收藏
分享

微信扫一扫

pandas2: Pandas特有的数据类型Series和DataFrame


Series和DataFrame是Pandas里最常用的基本数据类型:

1.创建Series

import pandas as

s1 = pd.Series([1,2,3,4,5])
print(s1)

0    1
1 2
2 3
3 4
4 5
dtype: int64

s2 = pd.Series([1,2,3.0,4,5])
print(s2)

0    1.0
1 2.0
2 3.0
3 4.0
4 5.0
dtype: float64

s3 = pd.Series([False, 1,2.0,'hello'])
print(s3)

0    False
1 1
2 2
3 hello
dtype: object

改变第一列索引

ss = pd.Series(['Bill','MicroSoft'],index=['person','company'])
print(ss)

person          Bill
company MicroSoft
dtype: object

2.创建DataFrame

import pandas as

persons = pd.DataFrame({
'Name':['Rosaline Franklin','William Gosset'],
'Occupation':['Chemist','Statistician'],
'Born':['1920-07-25','1876-06-13'],
'Died':['1958-04-16','1937-10-16'],
'age':[37,61]})

print(persons)

                Name    Occupation        Born        Died  age
0 Rosaline Franklin Chemist 1920-07-25 1958-04-16 37
1 William Gosset Statistician 1876-06-13 1937-10-16 61

persons.head()



Name

Occupation

Born

Died

age

0

Rosaline Franklin

Chemist

1920-07-25

1958-04-16

37

1

William Gosset

Statistician

1876-06-13

1937-10-16

61

persons = pd.DataFrame({
'Name':['Rosaline Franklin','William Gosset'],
'Occupation':['Chemist','Statistician'],
'Born':['1920-07-25','1876-06-13'],
'Died':['1958-04-16','1937-10-16'],
'Age':[37,61]},columns=['Occupation','Born','Died','Age'],index=['Rosaline Franklin','William Gosset'])
print(persons)

                     Occupation        Born        Died  Age
Rosaline Franklin Chemist 1920-07-25 1958-04-16 37
William Gosset Statistician 1876-06-13 1937-10-16 61

使用有顺序的字典

from collections import OrderedDict

persons = pd.DataFrame(OrderedDict([
('Name',['Rosaline Franklin','William Gosset']),
('Occupation',['Chemist','Statistician']),
('Born',['1920-07-25','1876-06-13']),
('Died',['1958-04-16','1937-10-16']),
('Age',[37,61])
]))

print(persons)

                Name    Occupation        Born        Died  Age
0 Rosaline Franklin Chemist 1920-07-25 1958-04-16 37
1 William Gosset Statistician 1876-06-13 1937-10-16 61


举报

相关推荐

0 条评论