0
点赞
收藏
分享

微信扫一扫

tf.reduce_mean与tf.reduce_min


tf.reduce_mean


reduce_mean(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Reduction

Computes the mean of elements across dimensions of a tensor.

​input_tensor​​ along the dimensions given in ​​axis​​. Unless ​​keep_dims​​ is true, the rank of the tensor is reduced by 1 for each entry in ​​axis​​. If ​​keep_dims​​​​axis​

For example:

# 'x' is [[1., 1.]
# [2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]

Args:

​input_tensor​

  • : The tensor to reduce. Should have numeric type.

​axis​

  • : The dimensions to reduce. If

​None​​​​keep_dims​

  • : If true, retains reduced dimensions with length 1.

​name​

  • : A name for the operation (optional).

​reduction_indices​

  • : The old (deprecated) name for axis.
Returns:

The reduced tensor.

numpy compatibility

Equivalent to np.mean

不翻译了,这个就是计算向量均值的,加各种参数按各种方式计算均值,不懂再交流

tf.reduce_min


reduce_min(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Reduction

Computes the minimum of elements across dimensions of a tensor.

​input_tensor​​ along the dimensions given in ​​axis​​. Unless ​​keep_dims​​ is true, the rank of the tensor is reduced by 1 for each entry in ​​axis​​. If ​​keep_dims​​​​axis​

Args:

​input_tensor​

  • : The tensor to reduce. Should have numeric type.

​axis​

  • : The dimensions to reduce. If

​None​​​​keep_dims​

  • : If true, retains reduced dimensions with length 1.

​name​

  • : A name for the operation (optional).

​reduction_indices​

  • : The old (deprecated) name for axis.

Returns:

The reduced tensor.

numpy compatibility

Equivalent to np.min

这个就是计算向量的最小值,加各种参数按各种方式计算最小值,不懂再交流


举报

相关推荐

0 条评论