引言
众所周知,软件系统有三高:高并发、高性能、高可用。三者既有区别也有联系,门门道道很多,全面讨论可以大战三天三夜。
高并发对于Java开发者来说都不陌生,每年天猫双十一,秒杀大促等场景阿里都稳稳的扛住了如此大的并发量,因此说,阿里在这方面也有绝对的话语权。
可以从阿里等其他互联网大厂的招聘要求上看到,有高并发开发经验优先考虑。因此,Java并发问题一直是各个大厂面试的重点之一。很多程序员每天忙着搬砖,平时接触不到高并发,哪天受不了跑去面试,还常常会被面试官犀利的高并发问题直接KO。
我们都知道高并发的基础是并发编程,而阿里新推出的这份《新高并发宝典》层层深入,形成了一个很好的知识系统,让你在应对面试官的时候完全不慌,所以今天我们就一起来学习一下阿里的高并发架构吧。
数据库
- 2.1 池化技术:如何减少频繁创建数据库连接的性能损耗?
- 2.2 数据库优化方案(一):查询请求增加时,如何做主从分离?
- 2.3 数据库优化方案(二):写入数据量增加时,如何实现分库分表?
- 2.4 发号器:如何保证分库分表后ID的全局唯一性?
- 2.5 NoSQL:在高并发场景下,数据库和NoSQL如何做到互补?
缓存
- 3.1 缓存:数据库成为瓶颈后,动态数据的查询要如何加速?
- 3.2 缓存的使用姿势(一):如何选择缓存的读写策略?
- 3.3 缓存的使用姿势(二):缓存如何做到高可用?
- 3.4 缓存的使用姿势(三):缓存穿透了怎么办?
- 3.5 CDN:静态资源如何加速?
消息队列
- 4.1 消息队列:秒杀时如何处理每秒上万次的下单请求?
- 4.2 消息投递:如何保证消息仅仅被消费一次?
- 4.3 消息队列:如何降低消息队列系统中消息的延迟?
- 4.4 面试现场第二期:当问到项目经 历时,面试官究竟想要了解什么?
分布式服务
- 5.1 系统架构:每秒1万次请求的系统要做服务化拆分吗?
- 5.2 微服务架构:微服务化后,系统架构要如何改造?
- 5.3 RPC框架:10万QPS下如何实现毫秒级的服务调用?
- 5.4 注册中心:分布式系统如何寻址?
- 5.5 分布式Trace:横跨几十个分布式组件的慢请求要如何排查?
- 5.6 负载均衡:怎样提升系统的横向扩展能力?
- 5.7 API网关:系统的门面要如何做呢?
- 5.8 多机房部署:跨地域的分布式系统如何做?
- 5.9 Service Mesh:如何屏蔽服务化系统的服务治理细节?
维护
- 6.1 给系统加上眼睛:服务端监控要怎么做?
- 6.2 应用性能管理:用户的使用体验应该如何监控?
- 6.3 压力测试:怎样设计全链路压力测试平台?
- 6.4 配置管理:成千上万的配置项要如何管理?
- 6.5 降级熔断:如何屏蔽非核心系统故障的影响?
- 6.6 流量控制:高并发系统中我们如何操纵流量?
- 6.7 面试现场第三期:你要如何准备一场技术面试呢?
实战
- 7.1 计数系统设计(一):面对海量数据的计数器要如何做?
- 7.2 计数系统设计(二):50万QPS下如何设计未读数系统?
- 7.3 信息流设计(一):通用信息流系统的推模式要如何做?
- 7.4 信息流设计(二):通用信息流系统的拉模式要如何做?
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
《一线大厂Java面试真题解析+Java核心总结学习笔记+最新全套讲解视频+实战项目源码》开源
Java开发优秀开源项目:
-
ali1024.coding.net/public/P7/Java/git
- github.com/spring-projects
最后
针对最近很多人都在面试,我这边也整理了相当多的面试专题资料,也有其他大厂的面经。希望可以帮助到大家。
下面的面试题答案都整理成文档笔记。也还整理了一些面试资料&最新2021收集的一些大厂的面试真题(都整理成文档,小部分截图)
最新整理电子书