0
点赞
收藏
分享

微信扫一扫

子域名的介绍及收集

墨春 2024-01-17 阅读 7

 

  个人主页:日刷百题

系列专栏〖C/C++小游戏〗〖Linux〗〖数据结构〗 〖C语言〗

🌎欢迎各位点赞👍+收藏⭐️+留言📝 

前言:

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。

基本思想:

递归实现方式常见有三种,区别于单趟思想,性能差别不大,下面我们看下快排递归实现。

一、快速排序的递归实现

1.1   Hoare排序

1.1.1  单趟目的

1.1.2   动图解析

单趟思路:

该排序有一个需要注意的点是:必须左边先走找小

因为左边先走,必定相遇时位置对应的值小于keyi位置值,保证最后这俩个位置交换,相遇位置即是keyi位置对应值最终位置。

解析:

 1.1.3  代码实现

解析:

该代码将单趟写在子函数中,这样使得整个代码层次更加清晰,也便于理解。可以发现我们对单趟中keyi做了优化,因为keyi的位置,是影响快速排序效率的重大因素。因此我们采用了三数取中的方法解决选keyi不合适的问题。即知道这组无序数列的首和尾后,我们只需要在首,中,尾这三个数据中,选择一个排在中间的数据作为基准值(keyi),进行快速排序,即可进一步提高快速排序的效率。

后面2种单趟也做这样的优化,后面就不过多介绍。

//Hoare快排
int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
		{
			return end;
		}
		else
		{
			if (a[begin] > a[mid])
			{
				return mid;
			}
			else
			{
				return begin;
			}
		}
	}
	else//(a[begin]<= a[end])
	{
		if (a[begin] > a[mid])
		{
			return begin;
		}
		else
		{
			if (a[end] > a[mid])
			{
				return mid;
			}
			else
			{
				return end;
			}
		}
	}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Hoare(int* a, int begin, int end)
{
	int mid = GetMid(a,begin, end);
	swap(&a[begin], &a[mid]);
	int keyi = begin;
	int left = begin;
	int right = end;
	while (left < right)
	{
		//右边找小
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		//左边找大
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		swap(&a[left], &a[right]);


	}
	swap(&a[keyi], &a[left]);
	return left;

}
void  QuickSort_Hoare(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi= _QuickSort_Hoare(a, begin, end);//单趟
	//递归  [begin,keyi-1] keyi,[keyi+1,end]
	QuickSort_Hoare(a, begin, keyi - 1);
	QuickSort_Hoare(a, keyi+1, end);

}

1.2  挖坑法 

1.2.1  单趟目的

1.2.2  动图解析

单趟思路:

 1.2.3  代码实现 

int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
		{
			return end;
		}
		else
		{
			if (a[begin] > a[mid])
			{
				return mid;
			}
			else
			{
				return begin;
			}
		}
	}
	else//(a[begin]<= a[end])
	{
		if (a[begin] > a[mid])
		{
			return begin;
		}
		else
		{
			if (a[end] > a[mid])
			{
				return mid;
			}
			else
			{
				return end;
			}
		}
	}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pit(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int pit = begin;
	int  key = a[begin];
	int left = begin;
	int right = end;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[pit] = a[right];
		pit = right;
		while(left < right&& a[left] <= key)
		{
			left++;
		}
		a[pit] = a[left];
		pit = left;
	}
	a[left] = key;
	return left;

}
void  QuickSort_Pit(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = _QuickSort_Pit(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pit(a, begin, keyi - 1);
	QuickSort_Pit(a, keyi + 1, end);

}

1.3 双指针法

1.3.1  单趟目的

1.3.2  动图解析

单趟思路:

1.3.3  代码实现

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}
void  QuickSort_Pointer(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = _QuickSort_Pointer(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pointer(a, begin, keyi - 1);
	QuickSort_Pointer(a, keyi + 1, end);

}

二、快速排序的优化

2.1  三数取中法选key

这个方法提升效率比较显著,上面已经排序均用该方法优化。

2.2  递归到小的子区间,使用插入排序

 

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}
void  QuickSort_Pointer(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if(end-begin+1>10)
{
int keyi = _QuickSort_Pointer(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pointer(a, begin, keyi - 1);
	QuickSort_Pointer(a, keyi + 1, end);
}
else
{
InsertSort(a + begin, end - begin + 1);
}

}

三、快速排序的非递归实现

递归改为非递归,一般2种方法:

递归使用的空间是栈空间,所以容易出现栈溢出的情况,我们将快速排序改为非递归版本,这样空间的开辟就在堆上了,这样也就解决了这个问题。

快速排序的非递归与递归思想相同,非递归使用栈来模拟递归的实现,思路如下:

代码实现:

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}

typedef int DateType;
typedef struct Stack
{
    DateType* a;
    int top;
    int capacity;
}Stack;
//初始化和销毁栈
void InitStack(Stack* ps)
{
    assert(ps);
    ps->a = NULL;
    ps->top = ps->capacity = 0;
}
void DestoryStack(Stack* ps)
{
    assert(ps);
    free(ps->a);
    ps->a = NULL;
    ps->top = 0;
    ps->capacity = 0;
}

//出栈和入栈
void StackPush(Stack* ps, DateType x)
{
    assert(ps);
    if (ps->top == ps->capacity)
    {
        int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
        DateType* tmp = (DateType*)realloc(ps->a, sizeof(DateType) * newcapacity);
        if (tmp == NULL)
        {
            perror("realloc fail:");
            return;
        }
        ps->a = tmp;
        ps->capacity = newcapacity;
    }
    ps->a[ps->top] = x;
    ps->top++;
}
void StackPop(Stack* ps)
{
    assert(ps);
    assert(ps->top > 0);
    ps->top--;
}

//栈的有效个数和栈顶元素
int StackSize(Stack* ps)
{
    assert(ps);
    return ps->top;
}
DateType StackTop(Stack* ps)
{
    assert(ps);
    assert(ps->top > 0);
    return   ps->a[ps->top - 1];
}
//判空
bool IsEmptyStack(Stack* ps)
{
    assert(ps);
    return ps->top == 0;
}
void  QuickSort_Non_r(int* a, int begin, int end)
{
    Stack tmp;
    InitStack(&tmp);
    StackPush(&tmp,end);
    StackPush(&tmp, begin);
    while (!IsEmptyStack(&tmp))
    {
        int left = StackTop(&tmp);
        StackPop(&tmp);
        int right = StackTop(&tmp);
        StackPop(&tmp);


        int keyi = _QuickSort_Pointer(a, left, right);
        if (keyi+1 <right)
        {
            StackPush(&tmp,right);
            StackPush(&tmp,keyi+1);

        }
        if (left < keyi - 1)
        {
            StackPush(&tmp, keyi-1);
            StackPush(&tmp,left);
        }
   }

    DestoryStack(&tmp);



}

 总结:本篇文章总结了快速排序的递归及非递归俩大种方式。

希望大家阅读完可以有所收获,同时也感谢各位铁汁们的支持。文章有任何问题可以在评论区留言,百题一定会认真阅读!

举报

相关推荐

0 条评论