0
点赞
收藏
分享

微信扫一扫

JVM学习笔记(二)内存结构

龙毓七七 2023-07-14 阅读 68
jvm

目录

 

一、JVM内存结构

1. 虚拟机栈(JVM Stacks)

1)定义

2)栈内存溢出

3) 线程运行诊断

案例1:CPU占用过高

案例2:程序运行很长时间没有结果​编辑

2. 本地方法栈(Native Method Stacks)

3.  堆(Heap)

1)定义

2)特点

3)堆内存溢出

4)堆内存诊断

5)案例:垃圾回收后,内存占用仍然很高

4. 方法区

1)定义

2)组成 

3)方法区内存溢出

4)运行时常量池

5)StringTable

5.1 常量池和串池(StringTable)的关系

5.2 StringTable 特性

例1:第14行代码本质分析

例2:常量字符串拼接的底层原理

例3:intern() 方法

例4:面试题解答

5.3 StringTable 位置

5.4 StringTable 垃圾回收

5.5 StringTable 性能调优

5. 直接内存(Direct Memory)

1)定义

2)使用直接内存的好处 

3)演示直接内存溢出 

4)直接内存回收原理


学习黑马视频:01_什么是jvm_哔哩哔哩_bilibili

笔记参考文章:

  • JVM 学习笔记(一)内存结构_codeali csdn jvm内存结构_CodeAli的博客-CSDN博客
  • 【JVM】内存结构_jvm结构图_ΘLLΘ的博客-CSDN博客

一、JVM内存结构

程序计数器
虚拟机栈
本地方法栈

方法区

下图来源:https://www.cnblogs.com/lanqingzhou/p/12374544.html 

1. 虚拟机栈(JVM Stacks)

1)定义

  • 每个线程运行时所需要的内存,称为虚拟机栈
  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法

问题辨析
1. 垃圾回收是否涉及栈内存?
        不会。栈内存是方法调用产生的,方法调用结束后会弹出栈。

2. 栈内存分配越大越好吗?
        不是。因为物理内存是一定的,栈内存越大,可以支持更多的递归调用,但是可执行的线程数就会越少。

3. 方法内的局部变量是否线程安全

  • 如果方法内部的变量没有逃离方法的作用访问,它是线程安全的;(如果是对象,才需要考虑此问题;如果是基本类型变量,是可以保证它是线程安全的)
  • 如果是局部变量引用了对象,并逃离了方法的访问,那就要考虑线程安全问题。

总之,如果变量是线程私有的,就不用考虑线程安全问题;如果是共享的,如加了static之后,就需要考虑线程安全问题。

public class main1 {
    public static void main(String[] args) {

    }
    //下面各个方法会不会造成线程安全问题?

    //不会
    public static void m1() {
        StringBuilder sb = new StringBuilder();
        sb.append(1);
        sb.append(2);
        sb.append(3);
        System.out.println(sb.toString());
    }

    //会,可能会有其他线程使用这个对象
    public static void m2(StringBuilder sb) {
        sb.append(1);
        sb.append(2);
        sb.append(3);
        System.out.println(sb.toString());
    }

    //会,其他线程可能会拿到这个线程的引用
    public static StringBuilder m3() {
        StringBuilder sb = new StringBuilder();
        sb.append(1);
        sb.append(2);
        sb.append(3);
        return sb;
    }
    
}

2)栈内存溢出

Java.lang.stackOverflowError 栈内存溢出

导致栈内存溢出的情况:栈帧过大、过多、或者第三方类库操作,都有可能造成栈内存溢出
设置虚拟机栈内存大小:

package cn.itcast.jvm.t1.stack;

import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.util.Arrays;
import java.util.List;

/**
 * json 数据转换
 */
public class Demo1_19 {

    public static void main(String[] args) throws JsonProcessingException {
        Dept d = new Dept();
        d.setName("Market");

        Emp e1 = new Emp();
        e1.setName("zhang");
        e1.setDept(d);

        Emp e2 = new Emp();
        e2.setName("li");
        e2.setDept(d);

        d.setEmps(Arrays.asList(e1, e2));

        // { name: 'Market', emps: [{ name:'zhang', dept:{ name:'', emps: [ {}]} },] }
        ObjectMapper mapper = new ObjectMapper();
        System.out.println(mapper.writeValueAsString(d));
    }
}

class Emp {
    private String name;
    
    //使用该注解避免循环调用问题,转换时忽略这个属性————只通过部门去关联员工,员工不再关联部门了
    @JsonIgnore
    private Dept dept;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Dept getDept() {
        return dept;
    }

    public void setDept(Dept dept) {
        this.dept = dept;
    }
}
class Dept {
    private String name;
    private List<Emp> emps;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public List<Emp> getEmps() {
        return emps;
    }

    public void setEmps(List<Emp> emps) {
        this.emps = emps;
    }
}

3) 线程运行诊断

案例1:CPU占用过高

Linux环境下运行某些程序的时候,可能导致CPU的占用过高,这时需要定位占用CPU过高的线程。

第一步:用top命令定位哪个进程对cpu的占用过高;

通过top命令可以看到,PID为32655的进程编号占了CPU的99.7%,那如何进一步定位问题呢?

第二步:用ps命令进一步定位是哪个线程引起的cpu占用过高;(如下图,线程32665有问题)

通过下面这个命令发现占用CPU过高的线程编号为32665,该线程编号为十进制的,换算为十六进制为7f99;

第三步:jstack 进程id,可以根据线程id找到有问题的线程,进一步定位问题代码的源码行号 

案例2:程序运行很长时间没有结果

2. 本地方法栈(Native Method Stacks)

定义:实际上就是在java虚拟机调用一些本地方法时,需要给这些本地方法提供的内存空间。本地方法运行时,使用的内存就叫本地方法栈。

作用:给本地方法的运行提供内存空间。

这样的方法多吗?当然!不管是在一些java类库,还是在执行引擎,它们都会去调用这些本地方法。比如,在Object类的方法中,clone()方法是带有native的,这种native方法它是没有方法实现的,方法实现都是通过c或者c++语言编写的,java代码通过间接的去调用c或者c++的方法实现。

3.  堆(Heap)

前面讲的程序计数器、栈、本地方法栈,都是线程私有的。堆、方法区是线程共享的区域。

1)定义

        通过new关键字创建的对象,都会使用堆内存。

2)特点

  • 堆中的对象是线程共享的,堆中的对象一般都需要考虑线程安全问题(有例外);(前面说的虚拟机栈中的局部变量只要不逃逸出方法的作用范围,都是线程私有的,都是线程安全的);
  • 垃圾回收机制;(Heap中不再被引用的对象,就会被当作垃圾进行回收,以释放堆内存)。

3)堆内存溢出

堆空间大小设置:使用-Xmx参数

         所以,这里需要注意,当内存足够大时不太容易暴露内存溢出的问题,随着时间的累积有可能会导致内存溢出。但是,有可能你运行了很短的一段时间发现它没问题。所以,排查这种堆内存问题,最好把运行内存设的稍微小一些,这样会比较早的暴露堆内存溢出的问题。

4)堆内存诊断

1. jps 工具
        查看当前系统中有哪些 java 进程
2. jmap 工具
        查看堆内存占用情况 jmap - heap 进程id

 3. jconsole 工具
        图形界面的,多功能的监测工具,可以连续监测

演示上面几个工具的使用:

3.1 演示jmap工具的使用

 

 3.2 jconsole 工具的使用

5)案例:垃圾回收后,内存占用仍然很高

jvisualvm可视化工具 (视频21)

4. 方法区

官网地址:Chapter 2. The Structure of the Java Virtual Machine

1)定义

        对于 HotSpotJVM 而言,方法区还有一个别名叫做Non-Heap(非堆),目的就是要和堆分开。

        Java 虚拟机有一个在所有 Java 虚拟机线程之间共享的方法区域。方法区域类似于用于传统语言的编译代码的存储区域,或者类似于操作系统进程中的“文本”段。它存储每个类的结构信息,例如运行时常量池成员变量方法数据,以及方法和构造函数的代码,包括特殊方法,用于类和实例初始化以及接口初始化。

        方法区域是在虚拟机启动时创建的。尽管方法区域在逻辑上是堆的一部分,但简单的实现可能会选择不进行垃圾收集或压缩。此规范不强制指定方法区的位置或用于管理已编译代码的策略。方法区域可以具有固定的大小,或者可以根据计算的需要进行扩展,并且如果不需要更大的方法区域,则可以收缩。方法区域的内存不需要是连续的。

2)组成 

3)方法区内存溢出

  • 1.8 之前会导致永久代内存溢出
    • 使用 -XX:MaxPermSize=8m 指定永久代内存大小

  • 1.8 之后会导致元空间内存溢出
    • 使用 -XX:MaxMetaspaceSize=8m 指定元空间大小

 场景:Spring、MyBatis等。动态字节码技术。

4)运行时常量池

常量池:就是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量
等信息;
运行时常量池:常量池是 *.class 文件中的,当该类被加载,它的常量池信息就会放入运行时常量
池,并把里面的符号地址变为真实地址。(若不理解再看一遍视频25、26就明白了)

5)StringTable

StringTable是运行时常量池中重要的一个组成部分,即俗称的串池。先看几道面试题:

String s1 = "a";
String s2 = "b";
String s3 = "a" + "b";
String s4 = s1 + s2;
String s5 = "ab";
String s6 = s4.intern();

// 问
System.out.println(s3 == s4);
System.out.println(s3 == s5);
System.out.println(s3 == s6);

String x2 = new String("c") + new String("d");
String x1 = "cd";
x2.intern();

// 问,如果调换了【最后两行代码】的位置呢,如果是jdk1.6呢
System.out.println(x1 == x2);

5.1 常量池和串池(StringTable)的关系

常量池,最初存在于字节码文件中,当它运行的时候就会被加载到运行时常量池,但这时a b ab 仅是常量池中的符号,还没有成为java字符串对象;只有当程序执行到第11行的时候,才会把a符号变为“a”字符串对象,以此类推。(视频28)

5.2 StringTable 特性

  • 常量池中的字符串仅是符号,第一次用到时才变为对象
  • 利用串池的机制,来避免重复创建字符串对象
  • 字符串变量拼接的原理是 StringBuilder (1.8)
  • 字符串常量拼接的原理是编译期优化
  • 可以使用 intern 方法,主动将串池中还没有的字符串对象放入串池

        ★ 1.8 将这个字符串对象尝试放入串池,如果有则并不会放入,如果没有则放入串池。这两种情况都会把串池中的对象返回;
        ★ 1.6 将这个字符串对象尝试放入串池,如果有则并不会放入,如果没有会把此对象复制一份,放入串池,会把串池中的对象返回;

例1:第14行代码本质分析

例2:常量字符串拼接的底层原理

编译期会进行优化,因为结果是确定的。

例3:intern() 方法

intern方法 1.8

调用字符串对象的intern方法,会将该字符串对象尝试放入到串池中

  • 如果串池中没有该字符串对象,则放入成功
  • 如果有该字符串对象,则放入失败

无论放入是否成功,都会返回串池中的字符串对象

(下图是针对1.8的情况) 

intern方法 1.6

调用字符串对象的intern方法,会将该字符串对象尝试放入到串池中

  • 如果串池中没有该字符串对象,会将该字符串对象复制一份,再放入到串池中
  • 如果有该字符串对象,则放入失败

无论放入是否成功,都会返回串池中的字符串对象

(下图是针对1.6的情况) 

例4:面试题解答

5.3 StringTable 位置

  • JDK1.6 时,StringTable是属于常量池的一部分,它随常量池存储在永久代中。
  • JDK1.8 以后,StringTable是放在中的。
  • 下面的案例证明了1.6中是存在于永久代,1.8中是存在于堆空间。

5.4 StringTable 垃圾回收

-Xmx10m 指定堆内存大小
-XX:+PrintStringTableStatistics 打印字符串常量池信息
-XX:+PrintGCDetails
-verbose:gc 打印 gc 的次数,耗费时间等信息

/**
 * 演示 StringTable 垃圾回收
 * -Xmx10m -XX:+PrintStringTableStatistics -XX:+PrintGCDetails -verbose:gc
 */
public class Code_05_StringTableTest {

    public static void main(String[] args) {
        int i = 0;
        try {
            for(int j = 0; j < 10000; j++) { // j = 100, j = 10000
                String.valueOf(j).intern();
                i++;
            }
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            System.out.println(i);
        }
    }

}

5.5 StringTable 性能调优

StringTable底层是哈希表,所以它的性能跟哈希表大小是密切相关的。如果哈希表桶的个数比较多,那么元素相对就分散,哈希碰撞的几乎就会减小,查找的速度也会变快;反之,如果桶的个数较少,那么哈希碰撞的几乎就会增高,导致链表较长,查找的速度也会受到影响。

  • StringTable是由HashTable实现的,所以可以适当增加HashTable桶的个数,来减少字符串放入串池所需要的时间

  • 考虑是否将字符串对象入池

        可以通过intern方法减少重复入池,保证相同的地址在StringTable中只存储一份

5. 直接内存(Direct Memory)

1)定义

直接内存,并不属于Java虚拟机的内存管理,而是属于操作系统内存。 

  • 常见于 NIO 操作时,用于数据缓冲区
  • 分配回收成本较高,但读写性能高
  • 不受 JVM 内存回收管理

2)使用直接内存的好处 

package cn.itcast.jvm.t1.direct;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

/**
 * 演示 ByteBuffer 作用
 */
public class Demo1_9 {
    static final String FROM = "E:\\编程资料\\第三方教学视频\\youtube\\Getting Started with Spring Boot-sbPSjI4tt10.mp4";
    static final String TO = "E:\\a.mp4";
    static final int _1Mb = 1024 * 1024;

    public static void main(String[] args) {
        io(); // io 用时:1535.586957 1766.963399 1359.240226
        directBuffer(); // directBuffer 用时:479.295165 702.291454 562.56592
    }

    private static void directBuffer() {
        long start = System.nanoTime();
        try (FileChannel from = new FileInputStream(FROM).getChannel();
             FileChannel to = new FileOutputStream(TO).getChannel();
        ) {
            ByteBuffer bb = ByteBuffer.allocateDirect(_1Mb);
            while (true) {
                int len = from.read(bb);
                if (len == -1) {
                    break;
                }
                bb.flip();
                to.write(bb);
                bb.clear();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("directBuffer 用时:" + (end - start) / 1000_000.0);
    }

    private static void io() {
        long start = System.nanoTime();
        try (FileInputStream from = new FileInputStream(FROM);
             FileOutputStream to = new FileOutputStream(TO);
        ) {
            byte[] buf = new byte[_1Mb];
            while (true) {
                int len = from.read(buf);
                if (len == -1) {
                    break;
                }
                to.write(buf, 0, len);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("io 用时:" + (end - start) / 1000_000.0);
    }
}

        因为 java 不能直接操作文件管理,需要切换到内核态,使用本地方法进行操作,然后读取磁盘文件,会在系统内存中创建一个缓冲区,将数据读到系统缓冲区, 然后在将系统缓冲区数据,复制到 java 堆内存中。缺点是数据存储了两份,在系统内存中有一份,java 堆中有一份,造成了不必要的复制。(原理流程如上面左图)
        使用了 DirectBuffer 后文件读取流程,如上面右图。直接内存是操作系统和 Java 代码都可以访问的一块区域,无需将代码从系统内存复制到 Java 堆内存,从而提高了效率。

3)演示直接内存溢出 

4)直接内存回收原理

直接内存不受 JVM 内存回收管理,那么它所分配内存会不会被正确回收?底层又是怎么实现的?

public class Code_06_DirectMemoryTest {

    public static int _1GB = 1024 * 1024 * 1024;

    public static void main(String[] args) throws IOException, NoSuchFieldException, IllegalAccessException {
//        method();
        method1();
    }

    // 演示 直接内存 是被 unsafe 创建与回收
    private static void method1() throws IOException, NoSuchFieldException, IllegalAccessException {

        Field field = Unsafe.class.getDeclaredField("theUnsafe");
        field.setAccessible(true);
        Unsafe unsafe = (Unsafe)field.get(Unsafe.class);

        long base = unsafe.allocateMemory(_1GB);
        unsafe.setMemory(base,_1GB, (byte)0);
        System.in.read();

        unsafe.freeMemory(base);
        System.in.read();
    }

    // 演示 直接内存被 释放
    private static void method() throws IOException {
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(_1GB);
        System.out.println("分配完毕");
        System.in.read();
        System.out.println("开始释放");
        byteBuffer = null;
        System.gc(); // 手动 gc
        System.in.read();
    }

}

直接内存的回收不是通过 JVM 的垃圾回收来释放的,而是通过unsafe.freeMemory 来手动释放。
第一步:allocateDirect 的实现

public static ByteBuffer allocateDirect(int capacity) {
    return new DirectByteBuffer(capacity);
}

底层是创建了一个 DirectByteBuffer 对象。
第二步:DirectByteBuffer 类

DirectByteBuffer(int cap) {   // package-private
   
    super(-1, 0, cap, cap);
    boolean pa = VM.isDirectMemoryPageAligned();
    int ps = Bits.pageSize();
    long size = Math.max(1L, (long)cap + (pa ? ps : 0));
    Bits.reserveMemory(size, cap);

    long base = 0;
    try {
        base = unsafe.allocateMemory(size); // 申请内存
    } catch (OutOfMemoryError x) {
        Bits.unreserveMemory(size, cap);
        throw x;
    }
    unsafe.setMemory(base, size, (byte) 0);
    if (pa && (base % ps != 0)) {
        // Round up to page boundary
        address = base + ps - (base & (ps - 1));
    } else {
        address = base;
    }
    // 通过虚引用,来实现直接内存的释放,this为虚引用的实际对象, 第二个参数是一个回调,
    //实现了 runnable 接口,run 方法中通过 unsafe 释放内存。
    cleaner = Cleaner.create(this, new Deallocator(base, size, cap)); 
    att = null;
}

这里调用了一个 Cleaner 的 create 方法,且后台线程还会对虚引用的对象监测,如果虚引用的实际对象(这里是 DirectByteBuffer )被回收以后,就会调用 Cleaner 的 clean 方法,来清除直接内存中占用的内存。 

 public void clean() {
        if (remove(this)) {
            try {
            // 都用函数的 run 方法, 释放内存
                this.thunk.run();
            } catch (final Throwable var2) {
                AccessController.doPrivileged(new PrivilegedAction<Void>() {
                    public Void run() {
                        if (System.err != null) {
                            (new Error("Cleaner terminated abnormally", var2)).printStackTrace();
                        }

                        System.exit(1);
                        return null;
                    }
                });
            }

        }
    }

可以看到关键的一行代码, this.thunk.run(),thunk 是 Runnable 对象。run 方法就是回调 Deallocator 中的 run 方法,

		public void run() {
            if (address == 0) {
                // Paranoia
                return;
            }
            // 释放内存
            unsafe.freeMemory(address);
            address = 0;
            Bits.unreserveMemory(size, capacity);
        }

直接内存的回收机制总结

  • 使用了 Unsafe 类来完成直接内存的分配回收,回收需要主动调用freeMemory 方法
  • ByteBuffer 的实现内部使用了 Cleaner(虚引用)来检测 ByteBuffer 。一旦ByteBuffer 被垃圾回收,那么会由 ReferenceHandler(守护线程) 来调用 Cleaner 的 clean 方法调用 freeMemory 来释放内存

注意:

    /**
     * -XX:+DisableExplicitGC 显示的
     */
    private static void method() throws IOException {
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(_1GB);
        System.out.println("分配完毕");
        System.in.read();
        System.out.println("开始释放");
        byteBuffer = null;
        System.gc(); // 手动 gc 失效
        System.in.read();
    }

一般用 jvm 调优时,会加上下面的参数:

意思就是禁止我们手动的 GC,比如手动 System.gc() 无效,它是一种 full gc,会回收新生代、老年代,会造成程序执行的时间比较长。所以我们就通过 unsafe 对象调用 freeMemory 的方式释放内存。

举报

相关推荐

JVM学习笔记1--内存结构

JVM-JVM内存结构(二)

JVM学习笔记二

JVM内存结构

JVM 内存结构

jvm内存结构

0 条评论